• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Fu Lihua (Fu Lihua.) | Du Yubin (Du Yubin.) | Ding Yu (Ding Yu.) | Wang Dan (Wang Dan.) | Jiang Hanxu (Jiang Hanxu.) | Zhang Haitao (Zhang Haitao.)

收录:

EI Scopus SCIE

摘要:

Unsupervised person re-identification (Re-ID) aims to improve the model's scalability and obtain better Re-ID results in the unlabeled data domain. In this paper, we propose an unsupervised person Re-ID method based on multi-granularity feature representation and domain adaptive learning, which can effectively improve the performance of unsupervised person re-identification. The multi-granularity feature extraction module integrates global and local information of different granularity to obtain the multi-granularity person feature representation with rich discriminative information. The source domain classification module learns the labeled source dataset classification and obtains the person's discriminative knowledge in the source domain. On this basis, the domain adaptive module further considers the difference between the target domain and the source domain to learn adaptively for the model. Experiments on multiple public datasets show that the proposed method can achieve a competitive performance among other state-of-the-art unsupervised Re-ID methods.

关键词:

Domain adaptive Deep learning Multi-granularity Person re-identification

作者机构:

  • [ 1 ] [Fu Lihua]Beijing Univ Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Du Yubin]Beijing Univ Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Ding Yu]Beijing Univ Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Wang Dan]Beijing Univ Technol, Beijing 100124, Peoples R China
  • [ 5 ] [Jiang Hanxu]Beijing Univ Technol, Beijing 100124, Peoples R China
  • [ 6 ] [Zhang Haitao]Beijing Univ Technol, Beijing 100124, Peoples R China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

CHINESE JOURNAL OF ELECTRONICS

ISSN: 1022-4653

年份: 2022

期: 1

卷: 31

页码: 116-128

1 . 2

JCR@2022

1 . 2 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:49

JCR分区:4

中科院分区:4

被引次数:

WoS核心集被引频次: 1

SCOPUS被引频次: 2

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 6

归属院系:

在线人数/总访问数:86/4301736
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司