• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Wu, Bin (Wu, Bin.) | Wang, Naixin (Wang, Naixin.) | Lei, Jian-Hui (Lei, Jian-Hui.) | Shen, Yue (Shen, Yue.) | An, Quan-Fu (An, Quan-Fu.) (学者:安全福)

收录:

EI Scopus SCIE

摘要:

Zwitterionic groups are conducive to improve the antifouling performance and water permeability of nanofiltration membranes because of the excellent hydrophilicity and charged property. However, the transport of zwitterionic monomers during interfacial polymerization process is much slower than the reaction, leading to form many defects in the separation layer. In this study, phase transfer catalysts were used to intensify the interfacial mass transfer of zwitterionic amine monomers for fabricating polyamide thin-film composite nanofiltration membranes. The transport process was explored by measuring the diffusion kinetics of monomers to regulate the structures and properties of zwitterionic membranes. Consequently, low concentration of N-aminoethyl piperazine propane sulfonate (AEPPS) as aqueous monomer could be used to prepare membranes with excellent nanofiltration performance. When the concentration of AEPPS was as low as 1 w/v%, the as-prepared zwitterionic membrane possessed a pure water flux of 10.6 L m(-2) h(-1) bar(-1) with a high erythromycin retention of 91.7% and a low NaCl retention of 7.3%, which exhibited great application potential in the separation of monovalent salt/antibiotics. Moreover, the flux recovery ratio of the zwitterionic membrane was still maintained at similar to 96.5% after undergoing twice fouling-rinse experiments of bovine serum albumin, exhibiting exceptional antifouling performance.

关键词:

Phase transfer catalyst Monovalent salt/antibiotics separation Zwitterionic membrane Interfacial polymerization Intensification of mass transfer

作者机构:

  • [ 1 ] [Wu, Bin]Beijing Univ Technol, Dept Environm Chem Engn, Beijing Key Lab Green Catalysis & Separat, Beijing 100124, Peoples R China
  • [ 2 ] [Wang, Naixin]Beijing Univ Technol, Dept Environm Chem Engn, Beijing Key Lab Green Catalysis & Separat, Beijing 100124, Peoples R China
  • [ 3 ] [Lei, Jian-Hui]Beijing Univ Technol, Dept Environm Chem Engn, Beijing Key Lab Green Catalysis & Separat, Beijing 100124, Peoples R China
  • [ 4 ] [Shen, Yue]Beijing Univ Technol, Dept Environm Chem Engn, Beijing Key Lab Green Catalysis & Separat, Beijing 100124, Peoples R China
  • [ 5 ] [An, Quan-Fu]Beijing Univ Technol, Dept Environm Chem Engn, Beijing Key Lab Green Catalysis & Separat, Beijing 100124, Peoples R China

通讯作者信息:

查看成果更多字段

相关关键词:

来源 :

JOURNAL OF MEMBRANE SCIENCE

ISSN: 0376-7388

年份: 2021

卷: 643

9 . 5 0 0

JCR@2022

ESI学科: CHEMISTRY;

ESI高被引阀值:96

JCR分区:1

被引次数:

WoS核心集被引频次: 35

SCOPUS被引频次: 35

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 5

归属院系:

在线人数/总访问数:496/4285552
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司