Indexed by:
Abstract:
Featured Application Cerebrovascular. To develop a precise semantic segmentation method with an emphasis on the edges for automated segmentation of the arterial vessel wall and plaque based on the convolutional neural network (CNN) in order to facilitate the quantitative assessment of plaque in patients with ischemic stroke. A total of 124 subjects' MR vessel wall images were used to train, validate, and test the model using deep learning. An end-to-end architecture network that can emphasize the edge information, namely the Edge Vessel Segmentation Network (EVSegNet) for automated segmentation of the arterial vessel wall, is proposed. The EVSegNet network consists of two workflows: one is implemented to achieve finely and multiscale segmentation by combining Dense Upsampling Convolution (DUC) and Hybrid Dilated Convolution (HDC) with different dilation rates modules, and the other utilizes edge information and is fused with another workflow to finally segment the vessel wall. The proposed network demonstrates robust segmentation of the vessel wall and better performance with a Dice (%) of 87.5, compared with the traditional U-net that has a Dice (%) of 81.0 and other U-net-based models on the test dataset. The results suggest that the proposed segmentation method with an emphasis on the edges improves segmentation accuracy effectively and will facilitate the quantitative assessment of atherosclerosis.
Keyword:
Reprint Author's Address:
Source :
APPLIED SCIENCES-BASEL
Year: 2022
Issue: 14
Volume: 12
2 . 7
JCR@2022
2 . 7 0 0
JCR@2022
ESI Discipline: ENGINEERING;
ESI HC Threshold:49
JCR Journal Grade:2
CAS Journal Grade:3
Cited Count:
WoS CC Cited Count: 3
SCOPUS Cited Count: 3
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: