• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Xu, Wenjing (Xu, Wenjing.) | Zhu, Qing (Zhu, Qing.) (学者:朱青)

收录:

Scopus SCIE

摘要:

Featured Application Cerebrovascular. To develop a precise semantic segmentation method with an emphasis on the edges for automated segmentation of the arterial vessel wall and plaque based on the convolutional neural network (CNN) in order to facilitate the quantitative assessment of plaque in patients with ischemic stroke. A total of 124 subjects' MR vessel wall images were used to train, validate, and test the model using deep learning. An end-to-end architecture network that can emphasize the edge information, namely the Edge Vessel Segmentation Network (EVSegNet) for automated segmentation of the arterial vessel wall, is proposed. The EVSegNet network consists of two workflows: one is implemented to achieve finely and multiscale segmentation by combining Dense Upsampling Convolution (DUC) and Hybrid Dilated Convolution (HDC) with different dilation rates modules, and the other utilizes edge information and is fused with another workflow to finally segment the vessel wall. The proposed network demonstrates robust segmentation of the vessel wall and better performance with a Dice (%) of 87.5, compared with the traditional U-net that has a Dice (%) of 81.0 and other U-net-based models on the test dataset. The results suggest that the proposed segmentation method with an emphasis on the edges improves segmentation accuracy effectively and will facilitate the quantitative assessment of atherosclerosis.

关键词:

MR vessel wall image automated segmentation edge information

作者机构:

  • [ 1 ] [Xu, Wenjing]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Zhu, Qing]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China

通讯作者信息:

查看成果更多字段

相关关键词:

相关文章:

来源 :

APPLIED SCIENCES-BASEL

年份: 2022

期: 14

卷: 12

2 . 7

JCR@2022

2 . 7 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:49

JCR分区:2

中科院分区:3

被引次数:

WoS核心集被引频次: 3

SCOPUS被引频次: 3

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:322/4427093
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司