• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Jin, Liu (Jin, Liu.) | Li, Jian (Li, Jian.) | Yu, Wenxuan (Yu, Wenxuan.) | Du, Xiuli (Du, Xiuli.)

收录:

EI Scopus SCIE

摘要:

Concrete materials are widely acceptable to practical structural buildings exposed to not only uniaxial loads but also complicated stress states. Additionally, concrete structures under quasi -static loads may suffer from inevitable occasional dynamic loads. In this study, mesoscopic modelling on geometrical-similar concrete was conducted. Numerical experiments were per-formed under dynamic biaxial Tension-Compression loads with different strain rates (ranging from 10(-5) s(-1) to 1 s(-1)) and lateral stress ratios (ranging from-1.00 to 0). The effect of lateral stress ratio and strain rate on the mechanical damage behavior and size effect of geometrical -similar concrete was discussed. The numerical results indicate that the size effect on dynamic spindle compressive strength and dynamic lateral tensile strength are weakened with the increasing strain rate. However, the increasing lateral stress ratios bring different impacts on the size effect, namely enhancing the size effect on dynamic spindle compressive strength and weakening the size effect on dynamic lateral tensile strength. Moreover, considering the coupling effects between lateral stress ratio and strain rate, a dynamic Tension-Compression failure cri-terion for concrete was proposed. Finally, a static-dynamic universal size effect formula on the lateral tensile strength of concrete under dynamic Tension-Compression loading was established and verified.

关键词:

Concrete materials Strain rate effect Size effect Biaxial loading Lateral stress ratio

作者机构:

  • [ 1 ] [Jin, Liu]Beijing Univ Technol, Key Lab Urban Secur & Disaster Engn, Minist Educ, Beijing 100124, Peoples R China
  • [ 2 ] [Li, Jian]Beijing Univ Technol, Key Lab Urban Secur & Disaster Engn, Minist Educ, Beijing 100124, Peoples R China
  • [ 3 ] [Yu, Wenxuan]Beijing Univ Technol, Key Lab Urban Secur & Disaster Engn, Minist Educ, Beijing 100124, Peoples R China
  • [ 4 ] [Du, Xiuli]Beijing Univ Technol, Key Lab Urban Secur & Disaster Engn, Minist Educ, Beijing 100124, Peoples R China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

ENGINEERING FRACTURE MECHANICS

ISSN: 0013-7944

年份: 2022

卷: 271

5 . 4

JCR@2022

5 . 4 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:49

JCR分区:1

中科院分区:2

被引次数:

WoS核心集被引频次: 11

SCOPUS被引频次: 11

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 4

归属院系:

在线人数/总访问数:2549/4261460
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司