• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Sang, Lixia (Sang, Lixia.) (学者:桑丽霞) | Wang, Kaiyin (Wang, Kaiyin.) | Zhang, Ran (Zhang, Ran.) | Wang, Yuancong (Wang, Yuancong.) | Wu, Yuting (Wu, Yuting.)

收录:

EI Scopus SCIE

摘要:

A supercritical CO2 (sCO(2)) Brayton cycle solar power system based on solid particle thermal energy storage is proposed to enhance the efficiency of concentrated solar power (CSP). The effective thermal conductivity and thermal cycling stability of solid particles are crucial for sCO(2) CSP applications. Some natural and artificial solid particles, such as black silicon carbide, green silicon carbide, white corundum, brown corundum, brown ceramsite sand, garnet, river sand and desert sand are considered as potential thermal energy storage medium due to its low cost and easy availability in large quantities. However, there are few studies about the effective thermal conductivity and stability of these solid particles after thermal cycling tests. In this study, the effective thermal conductivity of these solid particles was measured by the hot wire method. Particularly, the effective thermal conductivity of black silicon carbide and green silicon carbide was measured by modified hot wire method. In addition, the changes of mass, real density, bulk density, void fraction and mean diameter of the above-mentioned solid particles after 100 times thermal cycling tests were also recorded to analyze thermal cycling stability. Based on the results of all the above tests, green silicon carbide exhibits high effective thermal conductivity and good thermal cycling stability, which presents a great potential as a thermal energy storage medium.

关键词:

Effective thermal conductivity sCO(2) concentrated solar power Solid particles Thermal cycling tests The hot wire method

作者机构:

  • [ 1 ] [Sang, Lixia]Beijing Univ Technol, MOE Key Lab Enhanced Heat Transfer & Energy Conse, Beijing Key Lab Heat Transfer & Energy Convers, Beijing 100124, Peoples R China
  • [ 2 ] [Wang, Kaiyin]Beijing Univ Technol, MOE Key Lab Enhanced Heat Transfer & Energy Conse, Beijing Key Lab Heat Transfer & Energy Convers, Beijing 100124, Peoples R China
  • [ 3 ] [Zhang, Ran]Beijing Univ Technol, MOE Key Lab Enhanced Heat Transfer & Energy Conse, Beijing Key Lab Heat Transfer & Energy Convers, Beijing 100124, Peoples R China
  • [ 4 ] [Wang, Yuancong]Beijing Univ Technol, MOE Key Lab Enhanced Heat Transfer & Energy Conse, Beijing Key Lab Heat Transfer & Energy Convers, Beijing 100124, Peoples R China
  • [ 5 ] [Wu, Yuting]Beijing Univ Technol, MOE Key Lab Enhanced Heat Transfer & Energy Conse, Beijing Key Lab Heat Transfer & Energy Convers, Beijing 100124, Peoples R China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

SOLAR ENERGY MATERIALS AND SOLAR CELLS

ISSN: 0927-0248

年份: 2022

卷: 242

6 . 9

JCR@2022

6 . 9 0 0

JCR@2022

ESI学科: MATERIALS SCIENCE;

ESI高被引阀值:66

JCR分区:1

中科院分区:2

被引次数:

WoS核心集被引频次: 8

SCOPUS被引频次: 9

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 6

归属院系:

在线人数/总访问数:783/4293456
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司