• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Shi, Rui (Shi, Rui.) | Li, Tianxing (Li, Tianxing.) | Yamaguchi, Yasushi (Yamaguchi, Yasushi.)

收录:

EI Scopus SCIE

摘要:

Attribution methods explaining a particular decision for a given convolutional neural network (CNN) have gained a lot of attention over the last few years. Among them, approximation methods of Shapley values are considered to be better ways of assigning attribution scores such that several desirable axioms are satisfied. Nevertheless, these attribution scores may still be misleading or inaccurate due to the inappropriate selection of a baseline which is necessary to apply Shapley values to CNNs. Previous baseline studies have focused on developing a ge-neric baseline selection method for all approximation methods; however, we find that designing a baseline under the essence of the selected approximation method itself produces better results than generic ones. With this ob-servation, we propose two primal baseline properties for Aumann-Shapley-based attributions and design a gen-eral objective function of generating a baseline iteratively by gradient descent. To increase efficiency, we further reduce the objective function into a quadratic optimization problem where the gradients only need to be calcu-lated once. We show that our method produces better attribution results than several state-of-the-art baseline selections and attribution methods on both qualitative and quantitative experiments.(c) 2022 Elsevier B.V. All rights reserved.

关键词:

Network interpretability Attribution methods Shapley values Convolutional neural networks

作者机构:

  • [ 1 ] [Shi, Rui]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Li, Tianxing]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Yamaguchi, Yasushi]Univ Tokyo, Dept Gen Syst Studies, Tokyo 1538902, Japan

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

IMAGE AND VISION COMPUTING

ISSN: 0262-8856

年份: 2022

卷: 124

4 . 7

JCR@2022

4 . 7 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:49

JCR分区:1

中科院分区:2

被引次数:

WoS核心集被引频次: 5

SCOPUS被引频次: 6

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:650/4753416
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司