收录:
摘要:
Accurate and real-time prediction of network traffic can not only help system operators allocate resources rationally according to their actual business needs but also help them assess the performance of a network and analyze its health status. In recent years, neural networks have been proved suitable to predict time series data, represented by the model of a long short-term memory (LSTM) neural network and a temporal convolutional network (TCN). This article proposes a novel hybrid prediction method named SG and TCN-based LSTM (ST-LSTM) for such network traffic prediction, which synergistically combines the power of the Savitzky-Golay (SG) filter, the TCN, as well as the LSTM. ST-LSTM employs a three-phase end-to-end methodology serving time series prediction. It first eliminates noise in raw data using the SG filter, then extracts short-term features from sequences applying the TCN, and then captures the long-term dependence in the data exploiting the LSTM. Experimental results over real-world datasets demonstrate that the proposed ST-LSTM outperforms state-of-the-art algorithms in terms of prediction accuracy.
关键词:
通讯作者信息:
电子邮件地址:
来源 :
IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING
ISSN: 1545-5955
年份: 2021
期: 3
卷: 19
页码: 1869-1879
5 . 6 0 0
JCR@2022
ESI学科: ENGINEERING;
ESI高被引阀值:87
JCR分区:1
归属院系: