• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Jiang, Bo (Jiang, Bo.) | Zhu, Jiangong (Zhu, Jiangong.) | Wang, Xueyuan (Wang, Xueyuan.) | Wei, Xuezhe (Wei, Xuezhe.) | Shang, Wenlong (Shang, Wenlong.) | Dai, Haifeng (Dai, Haifeng.)

收录:

EI Scopus SCIE

摘要:

Battery state of health (SOH) estimation is a critical but challenging demand in advanced battery management technologies. As an essential parameter, battery impedance contains valuable electrochemical information reflecting battery SOH. This study investigates a systematic comparative study of three categories of features extracted from battery electrochemical impedance spectroscopy (EIS) in SOH estimation. The three representative features are broadband EIS feature, model parameter feature, and fixed-frequency impedance feature. Based on the deduced EIS features, a machine learning technique using Gaussian process regression is adopted to estimate battery SOH. The battery aging and electrochemical tests for commercial 18650-type batteries are performed, in which the constant and dynamic discharging conditions are considered during battery aging. The battery life-cycle capacity and EIS data are collected for the machine learning model. The performance of the constructed features is investigated and comprehensively compared in terms of estimation accuracy, certainty, and efficiency. Experimental results highlight that using the fixed-frequency impedance feature can realize outstanding performance in battery SOH estimation. The average of the maximum absolute errors for different cells under different aging conditions is within 2.2%.

关键词:

Comparative study Data-driven Lithium-ion battery State of health Electrochemical impedance spectroscopy

作者机构:

  • [ 1 ] [Jiang, Bo]Tongji Univ, Postdoctoral Stn Mech Engn, Shanghai 201804, Peoples R China
  • [ 2 ] [Jiang, Bo]Tongji Univ, Sch Automot Studies, Shanghai 201804, Peoples R China
  • [ 3 ] [Zhu, Jiangong]Tongji Univ, Sch Automot Studies, Shanghai 201804, Peoples R China
  • [ 4 ] [Wei, Xuezhe]Tongji Univ, Sch Automot Studies, Shanghai 201804, Peoples R China
  • [ 5 ] [Dai, Haifeng]Tongji Univ, Sch Automot Studies, Shanghai 201804, Peoples R China
  • [ 6 ] [Wang, Xueyuan]Tongji Univ, Dept Control Sci & Engn, Shanghai 201804, Peoples R China
  • [ 7 ] [Wang, Xueyuan]Tongji Univ, Clean Energy Automot Engn Ctr, Shanghai 201804, Peoples R China
  • [ 8 ] [Wei, Xuezhe]Tongji Univ, Clean Energy Automot Engn Ctr, Shanghai 201804, Peoples R China
  • [ 9 ] [Dai, Haifeng]Tongji Univ, Clean Energy Automot Engn Ctr, Shanghai 201804, Peoples R China
  • [ 10 ] [Shang, Wenlong]Beijing Univ Technol, Coll Metropolitan Transportat, Beijing Key Lab Traff Engn, Beijing 100124, Peoples R China

通讯作者信息:

查看成果更多字段

相关关键词:

相关文章:

来源 :

APPLIED ENERGY

ISSN: 0306-2619

年份: 2022

卷: 322

1 1 . 2

JCR@2022

1 1 . 2 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:49

JCR分区:1

中科院分区:1

被引次数:

WoS核心集被引频次: 148

SCOPUS被引频次: 178

ESI高被引论文在榜: 12 展开所有

  • 2024-11
  • 2024-11
  • 2024-9
  • 2024-9
  • 2024-7
  • 2024-5
  • 2024-3
  • 2024-1
  • 2023-11
  • 2023-9
  • 2023-7
  • 2023-5

万方被引频次:

中文被引频次:

近30日浏览量: 4

归属院系:

在线人数/总访问数:1198/4287998
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司