• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Liu, Zhaoying (Liu, Zhaoying.) | Kan, Haipeng (Kan, Haipeng.) | Zhang, Ting (Zhang, Ting.) | Li, Yujian (Li, Yujian.)

收录:

Scopus SCIE

摘要:

This paper mainly deals with the problem of short text classification. There are two main contributions. Firstly, we introduce a framework of deep uniform kernel mapping support vector machine (DUKMSVM). The significant merit of this framework is that by expressing the kernel mapping function explicitly with a deep neural network, it is in essence an explicit kernel mapping instead of the traditional kernel function, and it allows better flexibility in dealing with various applications by applying different neural network structures. Secondly, to validate the effectiveness of this framework and to improve the performance of short text classification, we explicitly express the kernel mapping using bidirectional recurrent neural network (BRNN), and propose a deep bidirectional recurrent kernel mapping support vector machine (DRKMSVM) for short text classification. Experimental results on five public short text classification datasets indicate that in terms of classification accuracy, precision, recall rate and F1-score, the DRKMSVM achieves the best performance with the average values of accuracy, precision, recall rate, and F1-score of 87.23%, 86.99%, 86.13% and 86.51% respectively compared to traditional SVM, convolutional neural network (CNN), Naive Bayes (NB), and Deep Neural Mapping Support Vector Machine (DNMSVM) which applies multi-layer perceptron for kernel mapping.

关键词:

recurrent neural network kernel mapping support vector machine short text classification

作者机构:

  • [ 1 ] [Liu, Zhaoying]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Kan, Haipeng]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Zhang, Ting]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Li, Yujian]Guilin Univ Elect Technol, Sch Artificial Intelligence, Guilin 541004, Peoples R China

通讯作者信息:

  • [Zhang, Ting]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

APPLIED SCIENCES-BASEL

年份: 2020

期: 7

卷: 10

2 . 7 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:115

被引次数:

WoS核心集被引频次: 9

SCOPUS被引频次: 11

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

归属院系:

在线人数/总访问数:273/3772304
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司