• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Lai, Yingxu (Lai, Yingxu.) (学者:赖英旭) | Gao, Huijuan (Gao, Huijuan.) | Liu, Jing (Liu, Jing.)

收录:

EI Scopus SCIE PubMed

摘要:

Vulnerability mining technology is used for protecting the security of industrial control systems and their network protocols. Traditionally, vulnerability mining methods have the shortcomings of poor vulnerability mining ability and low reception rate. In this study, a test case generation model for vulnerability mining of the Modbus TCP based on an anti-sample algorithm is proposed. Firstly, a recurrent neural network is trained to learn the semantics of the protocol data unit. The softmax function is used to express the probability distribution of data values. Next, the random variable threshold and the maximum probability are compared in the algorithm to determine whether to replace the current data value with the minimum probability data value. Finally, the Modbus application protocol (MBAP) header is completed according to the protocol specification. Experiments using the anti-sample fuzzer show that it not only improves the reception rate of test cases and the ability to exploit vulnerabilities, but also detects vulnerabilities of industrial control protocols more quickly.

关键词:

vulnerability mining probability distribution industrial control system Modbus TCP recurrent neural network

作者机构:

  • [ 1 ] [Lai, Yingxu]Beijing Univ Technol, Fac Informat Technol, Coll Comp Sci, Beijing 100124, Peoples R China
  • [ 2 ] [Gao, Huijuan]Beijing Univ Technol, Fac Informat Technol, Coll Comp Sci, Beijing 100124, Peoples R China
  • [ 3 ] [Liu, Jing]Beijing Univ Technol, Fac Informat Technol, Coll Comp Sci, Beijing 100124, Peoples R China

通讯作者信息:

  • [Liu, Jing]Beijing Univ Technol, Fac Informat Technol, Coll Comp Sci, Beijing 100124, Peoples R China

查看成果更多字段

相关关键词:

相关文章:

来源 :

SENSORS

年份: 2020

期: 7

卷: 20

3 . 9 0 0

JCR@2022

ESI学科: CHEMISTRY;

ESI高被引阀值:139

被引次数:

WoS核心集被引频次: 13

SCOPUS被引频次: 19

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

在线人数/总访问数:332/3909330
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司