• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Xu, Fei (Xu, Fei.) | Xie, Hehu (Xie, Hehu.) | Zhang, Ning (Zhang, Ning.)

收录:

EI Scopus SCIE

摘要:

A type of parallel augmented subspace scheme for eigenvalue problems is proposed by using coarse space in the multigrid method. With the help of coarse space in the multigrid method, solving the eigenvalue problem in the finest space is decomposed into solving the standard linear boundary value problems and very-low-dimensional eigenvalue problems. The computational efficiency can be improved since there is no direct eigenvalue solving in the finest space and the multigrid method can act as the solver for the deduced linear boundary value problems. Furthermore, for different eigenvalues, the corresponding boundary value problem and low-dimensional eigenvalue problem can be solved in the parallel way since they are independent of each other and there exists no data exchanging. This property means that we do not need to do the orthogonalization in the highest-dimensional spaces. This is the main aim of this paper since avoiding orthogonalization can improve the scalability of the proposed numerical method. Some numerical examples are provided to validate the proposed parallel augmented subspace method. © 2020 Society for Industrial and Applied Mathematics

关键词:

Numerical methods Electronic data interchange Eigenvalues and eigenfunctions Boundary value problems Computational efficiency

作者机构:

  • [ 1 ] [Xu, Fei]Beijing Institute for Scientific and Engineering Computing, Faculty of Science, Beijing University of Technology, Beijing; 100124, China
  • [ 2 ] [Xie, Hehu]ICMSEC, LSEC, NCMIS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing; 100190, China
  • [ 3 ] [Xie, Hehu]School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing; 100049, China
  • [ 4 ] [Zhang, Ning]Institute of Electrical Engineering, Chinese Academy of Sciences, Beiertiao, Zhongguancun, Haidian, Beijing; 100190, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

SIAM Journal on Scientific Computing

ISSN: 1064-8275

年份: 2020

期: 5

卷: 42

页码: A2655-A2677

3 . 1 0 0

JCR@2022

ESI学科: MATHEMATICS;

ESI高被引阀值:46

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 10

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 4

归属院系:

在线人数/总访问数:306/3778905
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司