• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Wang, Zhen (Wang, Zhen.) | Zhao, Mi (Zhao, Mi.) | Huang, Jingqi (Huang, Jingqi.) | Zhong, Zilan (Zhong, Zilan.) | Du, Xiuli (Du, Xiuli.)

收录:

EI Scopus SCIE

摘要:

Active faults pose significant threats to the structural integrity of mountain tunnels in seismic active zones. Post-earthquake reconnaissance revealed that numerous tunnels were damaged during past earthquakes, specifically those crossing active fault zones. In this study, the structural response and damage mechanism of a water conveyance tunnel subjected to reverse faulting was investigated. A three-dimensional finite element model incorporating the cohesive interface elements was developed to simulate the nonlinear process of the reverse fault rupture. The ground deformation and tunnel damage characteristics predicted by the numerical analysis were in good agreement with the field observations and experimental results, which proved the feasibility of the proposed simulation scheme. Moreover, a parametric study was conducted to estimate the effects of dip angle, surrounding rock property, tunnel rigidity, and friction coefficient between linings on tunnel performance. The results showed that the damage zone with softer rock masses of grade IV to V, based on the Chinese Guidelines for Design of Highway Tunnel, generally led to moderate structural damage to the tunnel. The tunnel's performance in the damage zone can be further enhanced by increasing tunnel rigidity and smoothness of the external surface of the secondary lining.

关键词:

fault-tunnel interaction Reverse fault cohesive interface model mountain tunnels failure mechanism

作者机构:

  • [ 1 ] [Wang, Zhen]Beijing Univ Technol, Key Lab Urban Secur & Disaster Engn, Minist Educ, Beijing 100124, Peoples R China
  • [ 2 ] [Zhao, Mi]Beijing Univ Technol, Key Lab Urban Secur & Disaster Engn, Minist Educ, Beijing 100124, Peoples R China
  • [ 3 ] [Zhong, Zilan]Beijing Univ Technol, Key Lab Urban Secur & Disaster Engn, Minist Educ, Beijing 100124, Peoples R China
  • [ 4 ] [Du, Xiuli]Beijing Univ Technol, Key Lab Urban Secur & Disaster Engn, Minist Educ, Beijing 100124, Peoples R China
  • [ 5 ] [Huang, Jingqi]Univ Sci & Technol Beijing, Sch Civil & Resource Engn, Beijing Key Lab Urban Underground Space Engn, Beijing, Peoples R China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

JOURNAL OF EARTHQUAKE ENGINEERING

ISSN: 1363-2469

年份: 2022

期: 9

卷: 27

页码: 2481-2505

2 . 6

JCR@2022

2 . 6 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:49

JCR分区:2

中科院分区:3

被引次数:

WoS核心集被引频次: 15

SCOPUS被引频次: 13

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:482/4958618
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司