• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Yaqub, Muhammad (Yaqub, Muhammad.) | Feng Jinchao (Feng Jinchao.) (学者:冯金超) | Ahmed, Shahzad (Ahmed, Shahzad.) | Arshid, Kaleem (Arshid, Kaleem.) | Bilal, Muhammad Atif (Bilal, Muhammad Atif.) | Akhter, Muhammad Pervez (Akhter, Muhammad Pervez.) | Zia, Muhammad Sultan (Zia, Muhammad Sultan.)

收录:

Scopus SCIE

摘要:

Generative adversarial networks (GAN), which are fueled by deep learning, are an efficient technique for image reconstruction using under-sampled MR data. In most cases, the performance of a particular model's reconstruction must be improved by using a substantial proportion of the training data. However, gathering tens of thousands of raw patient data for training the model in actual clinical applications is difficult because retaining k-space data is not customary in the clinical process. Therefore, it is imperative to increase the generalizability of a network that was created using a small number of samples as quickly as possible. This research explored two unique applications based on deep learning-based GAN and transfer learning. Seeing as MRI reconstruction procedures go for brain and knee imaging, the proposed method outperforms current techniques in terms of signal-to-noise ratio (PSNR) and structural similarity index (SSIM). As compared to the results of transfer learning for the brain and knee, using a smaller number of training cases produced superior results, with acceleration factor (AF) 2 (for brain PSNR (39.33); SSIM (0.97), for knee PSNR (35.48); SSIM (0.90)) and AF 4 (for brain PSNR (38.13); SSIM (0.95), for knee PSNR (33.95); SSIM (0.86)). The approach that has been described would make it easier to apply future models for MRI reconstruction without necessitating the acquisition of vast imaging datasets.

关键词:

MRI image reconstruction deep learning transfer learning GANs

作者机构:

  • [ 1 ] [Yaqub, Muhammad]Beijing Univ Technol, Fac Informat Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 2 ] [Feng Jinchao]Beijing Univ Technol, Fac Informat Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 3 ] [Ahmed, Shahzad]Beijing Univ Technol, Fac Informat Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 4 ] [Arshid, Kaleem]Beijing Univ Technol, Fac Informat Technol, Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 5 ] [Bilal, Muhammad Atif]Riphah Int Univ, Riphah Coll Comp, Faisalabad Campus, Islamabad 38000, Pakistan
  • [ 6 ] [Akhter, Muhammad Pervez]Riphah Int Univ, Riphah Coll Comp, Faisalabad Campus, Islamabad 38000, Pakistan
  • [ 7 ] [Bilal, Muhammad Atif]Jilin Univ, Coll Geoexplorat Sci & Technol, Changchun 130061, Peoples R China
  • [ 8 ] [Zia, Muhammad Sultan]Univ Chenab, Dept Comp Sci, Gujranwala 50250, Pakistan

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

APPLIED SCIENCES-BASEL

年份: 2022

期: 17

卷: 12

2 . 7

JCR@2022

2 . 7 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:49

JCR分区:2

中科院分区:3

被引次数:

WoS核心集被引频次: 16

SCOPUS被引频次: 18

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 10

归属院系:

在线人数/总访问数:1223/4287485
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司