• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Guo, Nan (Guo, Nan.) | Gu, Ke (Gu, Ke.) | Qiao, Junfei (Qiao, Junfei.) | Liu, Hantao (Liu, Hantao.)

收录:

EI Scopus SCIE

摘要:

Convolutional neural networks (CNNs) can be generally regarded as learning-based visual systems for computer vision tasks. By imitating the operating mechanism of the human visual system (HVS), CNNs can even achieve better results than human beings in some visual tasks. However, they are primary when compared to the HVS for the reason that the HVS has the ability of active vision to promptly analyze and adapt to specific tasks. In this article, a new unified pooling framework is proposed and a series of pooling methods are designed based on the framework to implement active vision to CNNs. In addition, an active selection pooling (ASP) is put forward to reorganize the existing and newly proposed pooling methods. The CNN models with an ASP tend to have a behavior of focus selection according to tasks during the training process, which acts extremely similar to the HVS.

关键词:

pooling framework Visual systems deep convolutional neural networks (CNNs) Image color analysis Informatics Active vision Task analysis human visual system (HVS) Training Visualization Convolutional neural networks deep visual learning

作者机构:

  • [ 1 ] [Guo, Nan]Beijing Univ Technol, Fac Informat Technol,Beijing Artificial Intellige, Engn Res Ctr Intelligent Percept & Autonomous Con, Minist Educ,Beijing Lab Smart Environm Protect,Be, Beijing 100124, Peoples R China
  • [ 2 ] [Gu, Ke]Beijing Univ Technol, Fac Informat Technol,Beijing Artificial Intellige, Engn Res Ctr Intelligent Percept & Autonomous Con, Minist Educ,Beijing Lab Smart Environm Protect,Be, Beijing 100124, Peoples R China
  • [ 3 ] [Qiao, Junfei]Beijing Univ Technol, Fac Informat Technol,Beijing Artificial Intellige, Engn Res Ctr Intelligent Percept & Autonomous Con, Minist Educ,Beijing Lab Smart Environm Protect,Be, Beijing 100124, Peoples R China
  • [ 4 ] [Liu, Hantao]Cardiff Univ, Sch Comp Sci & Informat, Cardiff CF10 3AT, Wales

通讯作者信息:

查看成果更多字段

相关关键词:

相关文章:

来源 :

IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS

ISSN: 1551-3203

年份: 2022

期: 10

卷: 18

页码: 6610-6618

1 2 . 3

JCR@2022

1 2 . 3 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:49

JCR分区:1

中科院分区:1

被引次数:

WoS核心集被引频次: 3

SCOPUS被引频次: 4

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:433/4912149
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司