• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Jia, Xibin (Jia, Xibin.) (学者:贾熹滨) | Sun, Zheng (Sun, Zheng.) | Mi, Qing (Mi, Qing.) | Yang, Zhenghan (Yang, Zhenghan.) | Yang, Dawei (Yang, Dawei.)

收录:

EI Scopus SCIE

摘要:

Hepatocellular carcinoma (HCC) is a type of primary liver malignant tumor with a high recurrence rate and poor prognosis even undergoing resection or transplantation. Accurate discrimination of the histologic grades of HCC plays a critical role in the management and therapy of HCC patients. In this paper, we discuss a deep learning-based diagnostic model for HCC histologic grading with multimodal Magnetic Resonance Imaging (MRI) images to overcome the problem of limited well-annotated data and extract the discriminated fusion feature referring to the clinical diagnosis experience of radiologists. Accordingly, we propose a novel Multimodality-Contribution-Aware TripNet (MCAT) based on the metric learning and the attention-aware weighted multimodal fusion. The novelty of the method lies in the multimodality small-shot learning architecture designation and the multimodality adaptive weighted computing scheme. The comprehensive experiments are done on the clinic dataset with the well-annotation of lesion location by the professional radiologist. The experimental results show that our proposed MCAT is not only able to achieve acceptable quantitative measuring of HCC histologic grading based on the MRI sequences with small cases but also outperforms previous models in HCC histologic grading, reaching an accuracy of 84 percent, a sensitivity of 87 percent and precision of 89 percent.

关键词:

multimodality-contribution-aware attention weighting Lesions Medical diagnostic imaging Tumors histologic grading of hepatocellular carcinoma Feature extraction Task analysis small-shot learning multimodality fusion Training Noninvasive diagnosis Magnetic resonance imaging

作者机构:

  • [ 1 ] [Jia, Xibin]Beijing Univ Technol, Fac Informat, Beijing 100124, Peoples R China
  • [ 2 ] [Sun, Zheng]Beijing Univ Technol, Fac Informat, Beijing 100124, Peoples R China
  • [ 3 ] [Mi, Qing]Beijing Univ Technol, Fac Informat, Beijing 100124, Peoples R China
  • [ 4 ] [Yang, Zhenghan]Capital Univ Med Sci, Beijing Friendship Hosp, Beijing 100050, Peoples R China
  • [ 5 ] [Yang, Dawei]Capital Univ Med Sci, Beijing Friendship Hosp, Beijing 100050, Peoples R China

通讯作者信息:

查看成果更多字段

相关关键词:

来源 :

IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS

ISSN: 1545-5963

年份: 2022

期: 4

卷: 19

页码: 2003-2016

4 . 5

JCR@2022

4 . 5 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:46

JCR分区:1

中科院分区:3

被引次数:

WoS核心集被引频次: 7

SCOPUS被引频次: 8

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:389/4951875
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司