• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zhang, W. B. (Zhang, W. B..) | Wu, C. Y. (Wu, C. Y..) | Bao, Z. S. (Bao, Z. S..)

收录:

EI Scopus SCIE

摘要:

The technology for autonomous navigation on inland waterways is worth investigating, and navigable water surface segmentation is a key part of this technology. Semantic segmentation methods based on deep learning are able to distinguish between water surface areas and non-water surface areas. However, existing semantic segmentation methods cannot meet the requirements of the water surface segmentation task in terms of both segmentation precision and real-time performance. In this study, a Swap Attention Bilateral Segmentation Network (SA-BiSeNet) is proposed to improve segmentation performance while ensuring model inference speed by better fusing the two features of the dual-branch down-sampling network using the attention mechanism. Specifically, an innovative Swap Attention Module is designed to model the dependency between the features of the spatial detail branch and the features of the semantic branches, thus expanding the receptive fields of the spatial detail and semantic branches to each other's global contexts. This design can effectively fuse features and thus enhance feature representation. Experiments were conducted on the inland waterway dataset USVInland to verify the performance of SA-BiSeNet in terms of segmentation precision and inference speed, and SA-BiSeNet achieved 93.65% Mean IoU and maintained the same level of fps as the baseline.

关键词:

作者机构:

  • [ 1 ] [Zhang, W. B.]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Wu, C. Y.]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Bao, Z. S.]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China

通讯作者信息:

  • [Zhang, W. B.]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China;;

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

IET IMAGE PROCESSING

ISSN: 1751-9659

年份: 2022

期: 1

卷: 17

页码: 166-177

2 . 3

JCR@2022

2 . 3 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:49

JCR分区:3

中科院分区:4

被引次数:

WoS核心集被引频次: 2

SCOPUS被引频次: 2

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 5

归属院系:

在线人数/总访问数:379/4427191
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司