• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Li, Yue (Li, Yue.) (学者:李悦) | Liu, Yunze (Liu, Yunze.) | Jin, Caiyun (Jin, Caiyun.) | Mu, Jinlei (Mu, Jinlei.) | Li, Hongwen (Li, Hongwen.) | Liu, Jianglin (Liu, Jianglin.)

收录:

EI Scopus SCIE

摘要:

This paper investigated the multi-scale prediction of long-term creep in river sand (RS) concrete and manufactured sand (MS) concrete and analyzed the effect of the interfacial transition zone (ITZ) around the aggregate on the creep properties of concrete. Uniaxial compressive creep tests were conducted on the concrete for a duration of 360 d. The creep kinetic properties of the paste matrix and ITZ were obtained by microindentation test. The properties of ITZ were determined by the backscattered electron (BSE) image threshold segmentation technique and the Lu & Torquato model. Finally, the predicted concrete creep modulus was obtained through the calculation of creep homogenization, and the accuracy of multi-scale creep prediction when considering different ITZ cases was discussed. The results show that under the same water-binder ratio, the thickness of ITZ around MS was larger, the creep modulus was smaller and the volume fraction was larger compared with that of ITZ around RS. In the multi-scale homogenization calculation of the concrete long-term creep, the prediction accuracy of the computational model increased with the raised of the considered ITZ types. The prediction accuracy obtained when all ITZs were considered was improved by more than 46.3% compared to that when no ITZs were considered.

关键词:

Manufactured sand Creep Interfacial transition zone Microindentation Multi -scale homogenization

作者机构:

  • [ 1 ] [Li, Yue]Beijing Univ Technol, Key Lab Urban Secur & Disaster Engn, Beijing Key Lab Earthquake Engn & Struct Retrofit, Minist Educ, Beijing 100124, Peoples R China
  • [ 2 ] [Liu, Yunze]Beijing Univ Technol, Key Lab Urban Secur & Disaster Engn, Beijing Key Lab Earthquake Engn & Struct Retrofit, Minist Educ, Beijing 100124, Peoples R China
  • [ 3 ] [Mu, Jinlei]Beijing Univ Technol, Key Lab Urban Secur & Disaster Engn, Beijing Key Lab Earthquake Engn & Struct Retrofit, Minist Educ, Beijing 100124, Peoples R China
  • [ 4 ] [Li, Hongwen]Beijing Univ Technol, Key Lab Urban Secur & Disaster Engn, Beijing Key Lab Earthquake Engn & Struct Retrofit, Minist Educ, Beijing 100124, Peoples R China
  • [ 5 ] [Liu, Jianglin]Beijing Univ Technol, Key Lab Urban Secur & Disaster Engn, Beijing Key Lab Earthquake Engn & Struct Retrofit, Minist Educ, Beijing 100124, Peoples R China
  • [ 6 ] [Jin, Caiyun]Beijing Univ Technol, Fac Sci, Beijing 100124, Peoples R China

通讯作者信息:

查看成果更多字段

相关关键词:

来源 :

CONSTRUCTION AND BUILDING MATERIALS

ISSN: 0950-0618

年份: 2022

卷: 344

7 . 4

JCR@2022

7 . 4 0 0

JCR@2022

ESI学科: MATERIALS SCIENCE;

ESI高被引阀值:66

JCR分区:1

中科院分区:1

被引次数:

WoS核心集被引频次: 16

SCOPUS被引频次: 20

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:490/4978750
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司