• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Han HongGul (Han HongGul.) | Wang Tong (Wang Tong.) | Sun HaoYuan (Sun HaoYuan.) | Wu XiaoLong (Wu XiaoLong.) | Li Wen (Li Wen.) | Qiao JunFei (Qiao JunFei.)

收录:

EI Scopus SCIE

摘要:

A fuzzy super-twisting algorithm sliding mode controller is developed for the dissolved oxygen concentration in municipal wastewater nitrification process. First, a fuzzy neural network (FNN) model is designed to approach the oxygen dynamics with unmeasurable disturbances, then the established model consists of the nominal system model and the modelling error. Second, based on the FNN model, a super-twisting sliding mode controller is employed to stabilize the nominal system and to suppress the modelling error. Moreover, the stability of the system is investigated and an adaption law is applied to ensure the robustness of the closed-loop system. Finally, the comparison experiments on benchmark simulation model no. 2 (BSM2) of wastewater treatment show the advantages of the proposed method in multiple-units oxygen concentration control.

关键词:

fuzzy neural network municipal wastewater nitrification process super-twisting sliding mode control robust multivariable control

作者机构:

  • [ 1 ] [Han HongGul]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Wang Tong]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Sun HaoYuan]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Wu XiaoLong]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 5 ] [Qiao JunFei]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 6 ] [Li Wen]North China Univ Technol, Sch Mech & Mat Engn, Beijing 100041, Peoples R China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

SCIENCE CHINA-TECHNOLOGICAL SCIENCES

ISSN: 1674-7321

年份: 2022

期: 10

卷: 65

页码: 2420-2428

4 . 6

JCR@2022

4 . 6 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:49

JCR分区:1

中科院分区:2

被引次数:

WoS核心集被引频次: 8

SCOPUS被引频次: 9

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:189/4820002
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司