• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Yang, Xin (Yang, Xin.) | Liu, Bing (Liu, Bing.) | Xiang, Ling (Xiang, Ling.) | Hu, Aijun (Hu, Aijun.) | Xu, Yonggang (Xu, Yonggang.)

收录:

EI Scopus SCIE

摘要:

It's a challenging work to diagnose faults from the measured vibration signals automatically and efficiently under small samples. A new intelligent fault diagnosis method of rolling bearing with small samples is proposed based on structural similarity generative adversarial network (SSGAN) and improved MobileNetv3 convolutional neural network (IMCNN). Firstly, the wavelet transform (WT) is performed on the signal to obtain a wavelet 2D image with time-frequency characteristics. Then, SSGAN is constructed to obtain high-quality generated samples for expanding the small training sets. Finally, the improved MobileNetv3 convolutional neural network (IMCNN) is proposed to extract feature information of the extended samples by using the self-focus mechanism instead of the original lightweight focus mechanism, and the classification results are acquired for fault recognition. The experimental results show that the proposed SSGAN-IMCNN method can effectively extend the small samples and automatically detect the rolling bearing faults with high classification accuracy.

关键词:

Small samples Intelligent fault diagnosis Structurally similar generative adversarial networks (IMCNN) Improved MobileNetv3 convolutional neural Rolling bearings networks (SSGAN)

作者机构:

  • [ 1 ] [Yang, Xin]North China Elect Power Univ, Hebei Key Lab Elect Machinery Hlth Maintenance & F, Baoding 071003, Peoples R China
  • [ 2 ] [Liu, Bing]North China Elect Power Univ, Hebei Key Lab Elect Machinery Hlth Maintenance & F, Baoding 071003, Peoples R China
  • [ 3 ] [Xiang, Ling]North China Elect Power Univ, Hebei Key Lab Elect Machinery Hlth Maintenance & F, Baoding 071003, Peoples R China
  • [ 4 ] [Hu, Aijun]North China Elect Power Univ, Hebei Key Lab Elect Machinery Hlth Maintenance & F, Baoding 071003, Peoples R China
  • [ 5 ] [Xu, Yonggang]Beijing Univ Technol, Beijing 100124, Peoples R China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

MEASUREMENT

ISSN: 0263-2241

年份: 2022

卷: 203

5 . 6

JCR@2022

5 . 6 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:49

JCR分区:1

中科院分区:2

被引次数:

WoS核心集被引频次: 34

SCOPUS被引频次: 35

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:190/4512975
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司