收录:
摘要:
Accurate traffic congestion prediction is crucial for efficient urban intelligent transportation systems (ITS). Though most existing methods attempt to characterize spatial correlation and temporal correlation in traffic congestion, few of them consider spatial heterogeneity and temporal heterogeneity: spatial correlation depends on temporality, and temporal correlation depends on spatiality in traffic congestion. To address this problem, this paper proposes a novel approach called TCP-BAST with bilateral alternation to simultaneously capture both the correlation and the heterogeneity between spatiality and temporality to improve traffic congestion prediction. First, to capture spatial correlation and spatial heterogeneity, we propose a spatial-temporal alternation (STA) module with multi-head graph attention networks and temporal embedding. Second, to capture temporal correlation and temporal heterogeneity, we propose a temporal-spatial alternation (TSA) module with multi-head masked attention networks and spatial embedding. Third, to predict the traffic congestion of multiple road sections in a traffic network, we propose a spatial-temporal fusion (STF) module to fuse the multi-grained spatialtemporal features derived from the STA and TSA modules. The experimental results on a real-world traffic dataset demonstrate that the proposed TCP-BAST approach outperforms the baseline methods in terms of both the mean absolute error (MAE) and the root mean squared error (RMSE). Both spatial-temporal alternation and temporal-spatial alternation are important for improving traffic congestion prediction, with the former being more critical than the latter. (C) 2022 Elsevier Inc. All rights reserved.
关键词:
通讯作者信息:
来源 :
INFORMATION SCIENCES
ISSN: 0020-0255
年份: 2022
卷: 608
页码: 718-733
8 . 1
JCR@2022
8 . 1 0 0
JCR@2022
ESI学科: COMPUTER SCIENCE;
ESI高被引阀值:46
JCR分区:1
中科院分区:1
归属院系: