• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zhang, Wen (Zhang, Wen.) (学者:张文) | Yan, Shaoshan (Yan, Shaoshan.) | Li, Jian (Li, Jian.)

收录:

EI Scopus SCIE

摘要:

Accurate traffic congestion prediction is crucial for efficient urban intelligent transportation systems (ITS). Though most existing methods attempt to characterize spatial correlation and temporal correlation in traffic congestion, few of them consider spatial heterogeneity and temporal heterogeneity: spatial correlation depends on temporality, and temporal correlation depends on spatiality in traffic congestion. To address this problem, this paper proposes a novel approach called TCP-BAST with bilateral alternation to simultaneously capture both the correlation and the heterogeneity between spatiality and temporality to improve traffic congestion prediction. First, to capture spatial correlation and spatial heterogeneity, we propose a spatial-temporal alternation (STA) module with multi-head graph attention networks and temporal embedding. Second, to capture temporal correlation and temporal heterogeneity, we propose a temporal-spatial alternation (TSA) module with multi-head masked attention networks and spatial embedding. Third, to predict the traffic congestion of multiple road sections in a traffic network, we propose a spatial-temporal fusion (STF) module to fuse the multi-grained spatialtemporal features derived from the STA and TSA modules. The experimental results on a real-world traffic dataset demonstrate that the proposed TCP-BAST approach outperforms the baseline methods in terms of both the mean absolute error (MAE) and the root mean squared error (RMSE). Both spatial-temporal alternation and temporal-spatial alternation are important for improving traffic congestion prediction, with the former being more critical than the latter. (C) 2022 Elsevier Inc. All rights reserved.

关键词:

Spatial heterogeneity Bilateral alternation Spatial-temporal fusion Traffic congestion prediction Temporal heterogeneity

作者机构:

  • [ 1 ] [Zhang, Wen]Beijing Univ Technol, Sch Econ & Management, Beijing 100124, Peoples R China
  • [ 2 ] [Yan, Shaoshan]Beijing Univ Technol, Sch Econ & Management, Beijing 100124, Peoples R China
  • [ 3 ] [Li, Jian]Beijing Univ Technol, Sch Econ & Management, Beijing 100124, Peoples R China

通讯作者信息:

查看成果更多字段

相关关键词:

来源 :

INFORMATION SCIENCES

ISSN: 0020-0255

年份: 2022

卷: 608

页码: 718-733

8 . 1

JCR@2022

8 . 1 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:46

JCR分区:1

中科院分区:1

被引次数:

WoS核心集被引频次:

SCOPUS被引频次: 13

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:321/4954267
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司