• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Liu, Zhibin (Liu, Zhibin.) | Sun, Xiuping (Sun, Xiuping.) | Sun, Zhirong (Sun, Zhirong.) (学者:孙治荣)

收录:

EI Scopus SCIE

摘要:

Developing highly efficient, stable, recyclable, and application value heterogeneous catalysts in advanced oxidation processes has essential application value in the degradation of refractory pollutants. In this paper, the CoNi alloy anchored onto N-doped porous carbon (CoNi-600@NC) catalyst was prepared using bimetallic doped metal-organic frameworks as precursors. The magnetic CoNi-600@NC can activate peroxymonosulfate (PMS) to degrade sulfamethoxazole (SMX). Therefore, SMX can be removed 100% within 25 min. CoNi-600@NC/PMS has a broad pH (3-9) application range, good applicability, and repeatability. Radical quenching, quantitative and electrochemical experiments proved that the degradation of SMX was dominated by free radical (Superoxide anions) and non-free radical pathways (surface-bound radicals). Mechanistic analysis showed that the interaction between Co-Nx/pyridine N-sites and graphitized carbon with PMS induced the formation of surface-bound active species. Moreover, CoNi nanoparticles promoted the redox cycle of metals. The synergistic catalytic mechanisms between the CoNi alloy and the abundant functional groups gave CoNi-600@NC excellent catalytic properties and applicability. Using density functional theory predicted the reaction sites of SMX and proposed four degradation pathways. The toxicity of intermediates was comprehensively evaluated. In addition, a CoNi-600@NC continuous flow reactor was constructed with a daily treatment capacity of 45 L and 100% SMX removal. This study expands the application of persulfate advanced oxidation technology by synthesizing recyclable magnetic catalysts and provides new synergistic degradation mechanisms for removing refractory organics.

关键词:

Surface-bound radicals Peroxymonosulfate Degradation pathway Toxicity analysis Sulfamethoxazole

作者机构:

  • [ 1 ] [Liu, Zhibin]Beijing Univ Technol, Fac Environm & Life, Dept Environm Engn, Beijing 100124, Peoples R China
  • [ 2 ] [Sun, Xiuping]Beijing Univ Technol, Fac Environm & Life, Dept Environm Engn, Beijing 100124, Peoples R China
  • [ 3 ] [Sun, Zhirong]Beijing Univ Technol, Fac Environm & Life, Dept Environm Engn, Beijing 100124, Peoples R China
  • [ 4 ] [Liu, Zhibin]Beijing Univ Technol, Natl Engn Lab Adv Municipal Wastewater Treatment &, Beijing 100124, Peoples R China
  • [ 5 ] [Sun, Xiuping]Beijing Univ Technol, Natl Engn Lab Adv Municipal Wastewater Treatment &, Beijing 100124, Peoples R China
  • [ 6 ] [Sun, Zhirong]Beijing Univ Technol, Natl Engn Lab Adv Municipal Wastewater Treatment &, Beijing 100124, Peoples R China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

CHEMOSPHERE

ISSN: 0045-6535

年份: 2022

卷: 308

8 . 8

JCR@2022

8 . 8 0 0

JCR@2022

ESI学科: ENVIRONMENT/ECOLOGY;

ESI高被引阀值:47

JCR分区:1

中科院分区:2

被引次数:

WoS核心集被引频次:

SCOPUS被引频次: 28

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:480/4912434
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司