• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Qiao, Junfei (Qiao, Junfei.) | Li, Menghua (Li, Menghua.) | Wang, Ding (Wang, Ding.) (学者:王鼎)

收录:

EI Scopus SCIE

摘要:

By utilizing a neural-network-based adaptive critic mechanism, the optimal tracking control problem is investigated for nonlinear continuous-time (CT) multiplayer zero-sum games (ZSGs) with asymmetric constraints. Initially, we build an augmented system with the tracking error system and the reference system. Moreover, a novel nonquadratic function is introduced to address asymmetric constraints. Then, we derive the tracking Hamilton-Jacobi-Isaacs (HJI) equation of the constrained nonlinear multiplayer ZSG. However, it is extremely hard to get the analytical solution to the HJI equation. Hence, an adaptive critic mechanism based on neural networks is established to estimate the optimal cost function, so as to obtain the near-optimal control policy set and the near worst disturbance policy set. In the process of neural critic learning, we only utilize one critic neural network and develop a new weight updating rule. After that, by using the Lyapunov approach, the uniform ultimate boundedness stability of the tracking error in the augmented system and the weight estimation error of the critic network is verified. Finally, two simulation examples are provided to demonstrate the efficacy of the established mechanism.

关键词:

Adaptive critic designs Optimal control adaptive dynamic programming (ADP) Neural networks Mathematical models Nonlinear systems asymmetric constraints Hamilton-Jacobi-Isaacs (HJI) equation optimal tracking control nonlinear continuous-time (CT) systems Target tracking multiplayer zero-sum games (ZSGs) Cost function Games

作者机构:

  • [ 1 ] [Qiao, Junfei]Beijing Univ Technol, Fac Informat Technol, Beijing Inst Artificial Intelligence, Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 2 ] [Li, Menghua]Beijing Univ Technol, Fac Informat Technol, Beijing Inst Artificial Intelligence, Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 3 ] [Wang, Ding]Beijing Univ Technol, Fac Informat Technol, Beijing Inst Artificial Intelligence, Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China
  • [ 4 ] [Qiao, Junfei]Beijing Univ Technol, Beijing Lab Smart Environm Protect, Beijing 100124, Peoples R China
  • [ 5 ] [Li, Menghua]Beijing Univ Technol, Beijing Lab Smart Environm Protect, Beijing 100124, Peoples R China
  • [ 6 ] [Wang, Ding]Beijing Univ Technol, Beijing Lab Smart Environm Protect, Beijing 100124, Peoples R China

通讯作者信息:

  • [Wang, Ding]Beijing Univ Technol, Fac Informat Technol, Beijing Inst Artificial Intelligence, Beijing Key Lab Computat Intelligence & Intellige, Beijing 100124, Peoples R China;;[Wang, Ding]Beijing Univ Technol, Beijing Lab Smart Environm Protect, Beijing 100124, Peoples R China;;

查看成果更多字段

相关关键词:

来源 :

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

ISSN: 2162-237X

年份: 2022

期: 4

卷: 35

页码: 5671-5683

1 0 . 4

JCR@2022

1 0 . 4 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:46

JCR分区:1

中科院分区:1

被引次数:

WoS核心集被引频次: 22

SCOPUS被引频次: 26

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 10

归属院系:

在线人数/总访问数:1265/4269996
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司