• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Lu, Dechun (Lu, Dechun.) (Scholars:路德春) | Song, Zhiqiang (Song, Zhiqiang.) | Wang, Guosheng (Wang, Guosheng.) | Zhou, Xin (Zhou, Xin.) | Du, Xiuli (Du, Xiuli.)

Indexed by:

EI Scopus SCIE

Abstract:

A 3D peridynamic method involving the work done by the non-conservative force is developed, whose theoretical framework comprises two parts: the viscoelastic motion equation of material points and the rate-dependent fracture criterion of the bond. For the description of motion, a viscoelastic interaction model between material points is proposed based on the understanding deformation mechanism of concrete. Further, the viscoelastic motion equation is theorized by applying Hamilton???s principle which considers the energy dissipation, as a result, the viscoelastic deformation of brittle material can be captured. The elastic and viscous parameters are calibrated by the energy density equivalence between the developed 3D peridynamic method and the classical continuum mechanics under the same deformation condition. For the control of strength and cracking, the dynamic uniaxial S strength criterion is introduced into the fracture criterion of the bond so that the rate-dependent behavior of strength and cracking failure can be reflected. The function and superiority of the developed 3D peridynamic method are discussed via nu-merical experiments. It is found that the developed peridynamic method can reasonably reflect the influence of loading rate on the deformation, strength, and cracking of brittle material. Superscript/Subscript Available</comment

Keyword:

Viscoelastic interaction model Peridynamics Deformation mechanism Non-conservative force Brittle materials

Author Community:

  • [ 1 ] [Lu, Dechun]Beijing Univ Technol, Minist Educ, Key Lab Urban Secur & Disaster Engn, Beijing 100124, Peoples R China
  • [ 2 ] [Song, Zhiqiang]Beijing Univ Technol, Minist Educ, Key Lab Urban Secur & Disaster Engn, Beijing 100124, Peoples R China
  • [ 3 ] [Wang, Guosheng]Beijing Univ Technol, Minist Educ, Key Lab Urban Secur & Disaster Engn, Beijing 100124, Peoples R China
  • [ 4 ] [Zhou, Xin]Beijing Univ Technol, Minist Educ, Key Lab Urban Secur & Disaster Engn, Beijing 100124, Peoples R China
  • [ 5 ] [Du, Xiuli]Beijing Univ Technol, Minist Educ, Key Lab Urban Secur & Disaster Engn, Beijing 100124, Peoples R China

Reprint Author's Address:

Show more details

Related Keywords:

Source :

ENGINEERING FRACTURE MECHANICS

ISSN: 0013-7944

Year: 2022

Volume: 274

5 . 4

JCR@2022

5 . 4 0 0

JCR@2022

ESI Discipline: ENGINEERING;

ESI HC Threshold:49

JCR Journal Grade:1

CAS Journal Grade:2

Cited Count:

WoS CC Cited Count:

SCOPUS Cited Count: 9

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 1

Affiliated Colleges:

Online/Total:556/5287121
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.