• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Gu, Ke (Gu, Ke.) | Liu, Jing (Liu, Jing.) | Shi, Shuang (Shi, Shuang.) | Xie, Shuangyi (Xie, Shuangyi.) | Shi, Ting (Shi, Ting.) | Qiao, Junfei (Qiao, Junfei.)

收录:

EI Scopus SCIE

摘要:

This article focuses on proposing a new framework for self-organizing multichannel deep learning system (SMDLS) to solve the problem of river turbidity monitoring, which is one of the most critical indicators of water contamination. First, the basic architecture of our proposed SMDLS is established based on newly designed fractal modules, each of which is composed of one fixed block and one nested block. The nested block in the higher level fractal module is essentially the lower level fractal module. Second, we develop a novel riverway-like generalized regression loss function to improve the robustness of the proposed SMDLS to distorted labels, which is caused by small noise (e.g., the temperature drift noise and wet drift noise of turbidity sensors) in most cases and big noise (e.g., the outlier noise due to solar radiation shielded by mountains) on rare occasions. Finally, we further introduce an ensemble-induced multichannel (EMC) fusion to modify the proposed SMDLS for strengthening its performance and generalization ability. Experiment conducted on large-size river turbidity monitoring database demonstrates that our system considerably outperforms the existing state-of-the-art learning systems.

关键词:

fractal module Rivers riverway-like generalized regression loss function Fractals Sensors Deep learning Satellites river turbidity monitoring self-organizing deep learning system Ensemble-induced multichannel (EMC) fusion Monitoring Water pollution

作者机构:

  • [ 1 ] [Gu, Ke]Beijing Univ Technol, Engn Res Ctr Intelligent Percept & Autonomous Con, Fac Informat Technol,Beijing Lab Smart Environm P, Minist Educ,Beijing Key Lab Computational Intelli, Beijing 100124, Peoples R China
  • [ 2 ] [Liu, Jing]Beijing Univ Technol, Engn Res Ctr Intelligent Percept & Autonomous Con, Fac Informat Technol,Beijing Lab Smart Environm P, Minist Educ,Beijing Key Lab Computational Intelli, Beijing 100124, Peoples R China
  • [ 3 ] [Shi, Shuang]Beijing Univ Technol, Engn Res Ctr Intelligent Percept & Autonomous Con, Fac Informat Technol,Beijing Lab Smart Environm P, Minist Educ,Beijing Key Lab Computational Intelli, Beijing 100124, Peoples R China
  • [ 4 ] [Xie, Shuangyi]Beijing Univ Technol, Engn Res Ctr Intelligent Percept & Autonomous Con, Fac Informat Technol,Beijing Lab Smart Environm P, Minist Educ,Beijing Key Lab Computational Intelli, Beijing 100124, Peoples R China
  • [ 5 ] [Shi, Ting]Beijing Univ Technol, Engn Res Ctr Intelligent Percept & Autonomous Con, Fac Informat Technol,Beijing Lab Smart Environm P, Minist Educ,Beijing Key Lab Computational Intelli, Beijing 100124, Peoples R China
  • [ 6 ] [Qiao, Junfei]Beijing Univ Technol, Engn Res Ctr Intelligent Percept & Autonomous Con, Fac Informat Technol,Beijing Lab Smart Environm P, Minist Educ,Beijing Key Lab Computational Intelli, Beijing 100124, Peoples R China
  • [ 7 ] [Gu, Ke]Beijing Univ Technol, Beijing Artificial Intelligence Inst, Beijing 100124, Peoples R China
  • [ 8 ] [Liu, Jing]Beijing Univ Technol, Beijing Artificial Intelligence Inst, Beijing 100124, Peoples R China
  • [ 9 ] [Shi, Shuang]Beijing Univ Technol, Beijing Artificial Intelligence Inst, Beijing 100124, Peoples R China
  • [ 10 ] [Xie, Shuangyi]Beijing Univ Technol, Beijing Artificial Intelligence Inst, Beijing 100124, Peoples R China
  • [ 11 ] [Shi, Ting]Beijing Univ Technol, Beijing Artificial Intelligence Inst, Beijing 100124, Peoples R China
  • [ 12 ] [Qiao, Junfei]Beijing Univ Technol, Beijing Artificial Intelligence Inst, Beijing 100124, Peoples R China

通讯作者信息:

查看成果更多字段

相关关键词:

相关文章:

来源 :

IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT

ISSN: 0018-9456

年份: 2022

卷: 71

5 . 6

JCR@2022

5 . 6 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:49

JCR分区:1

中科院分区:2

被引次数:

WoS核心集被引频次: 5

SCOPUS被引频次: 10

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

归属院系:

在线人数/总访问数:1590/4278280
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司