• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Bo, Qihan (Bo, Qihan.) | Ma, Wei (Ma, Wei.) | Lai, Yu-Kun (Lai, Yu-Kun.) | Zha, Hongbin (Zha, Hongbin.)

收录:

EI Scopus SCIE

摘要:

Convolutional Neural Networks (CNNs) can reveal local variation details and multi-scale spatial context in images via low-to-high stages of feature expression; effective fusion of these raw features is key to Semantic Edge Detection (SED). The methods available in the field generally fuse features across stages in a position-aligned mode, which cannot satisfy the requirements of diverse semantic context in categorizing different pixels. In this paper, we propose a deep framework for SED, the core of which is a new multi-stage feature fusion structure, called All-HiS-In ACA (All-Higher-Stages-In Adaptive Context Aggregation). All-HiS-In ACA can adaptively select semantic context from all higher-stages for detailed features via a cross-stage self-attention paradigm, and thus can obtain fused features with high-resolution details for edge localization and rich semantics for edge categorization. In addition, we develop a non-parametric Inter-layer Complementary Enhancement (ICE) module to supplement clues at each stage with their counterparts in adjacent stages. The ICE-enhanced multi-stage features are then fed into the All-HiS-In ACA module. We also construct an Object-level Semantic Integration (OSI) module to further refine the fused features by enforcing the consistency of the features within the same object. Extensive experiments demonstrate the superior performance of the proposed method over state-of-the-art works.

关键词:

Aggregates Horses object-level semantic integration Semantics multi-stage feature fusion adaptive context aggregation Semantic edge detection Feature extraction Open systems complementary feature enhancement Image edge detection Image segmentation

作者机构:

  • [ 1 ] [Bo, Qihan]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Ma, Wei]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Lai, Yu-Kun]Cardiff Univ, Sch Comp Sci & Informat, Cardiff CF10 3AT, Wales
  • [ 4 ] [Zha, Hongbin]Peking Univ, Key Lab Machine Percept MOE, Sch Elect Engn & Comp Sci, Beijing 100871, Peoples R China

通讯作者信息:

查看成果更多字段

相关关键词:

来源 :

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY

ISSN: 1051-8215

年份: 2022

期: 10

卷: 32

页码: 6778-6791

8 . 4

JCR@2022

8 . 4 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:49

JCR分区:1

中科院分区:2

被引次数:

WoS核心集被引频次: 12

SCOPUS被引频次: 13

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 7

归属院系:

在线人数/总访问数:2453/4268033
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司