• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Guo, Xiangying (Guo, Xiangying.) | Zhu, Yunan (Zhu, Yunan.) | Qu, Yegao (Qu, Yegao.) | Cao, Dongxing (Cao, Dongxing.) (学者:曹东兴)

收录:

EI Scopus SCIE

摘要:

An adaptive dynamic vibration absorber (ADVA) is designed for low-frequency vibration suppression. The leaf springs are applied as the tuning stiffness elements. The principle of variable stiffness is analyzed to obtain the effective range of the first natural frequency variation. A classic simply supported manipulator is selected as the controlled system. The coupled dynamic model of the manipulator-ADVA system is built to obtain the maximum damping efficiency and the vibration absorption capacity of the designed ADVA. An experimental platform is set up to verify the theoretical results. It is revealed that the ADVA can adjust the first natural frequency on a large scale by changing the curvature of the leaf springs. The amplitude of the manipulator is reduced obviously with the installation of the designed ADVA. Finally, based on the short-time Fourier transformation (STFT), a stepwise optimization algorithm is proposed to achieve a quick tuning of the natural frequency of the ADVA so that it can always coincide with the frequency of the prime structure. Through the above steps, the intelligent frequency tuning of the ADVA is realized with high vibration absorption performance in a wide frequency range.

关键词:

leaf spring vibration control stiffness tuning O342 adaptive dynamic vibration absorber (ADVA)

作者机构:

  • [ 1 ] [Guo, Xiangying]Beijing Univ Technol, Coll Mech Engn, Beijing Key Lab Nonlinear Vibrat & Strength Mech, Beijing 100124, Peoples R China
  • [ 2 ] [Zhu, Yunan]Beijing Univ Technol, Coll Mech Engn, Beijing Key Lab Nonlinear Vibrat & Strength Mech, Beijing 100124, Peoples R China
  • [ 3 ] [Cao, Dongxing]Beijing Univ Technol, Coll Mech Engn, Beijing Key Lab Nonlinear Vibrat & Strength Mech, Beijing 100124, Peoples R China
  • [ 4 ] [Qu, Yegao]Shanghai Jiao Tong Univ, State Key Lab Mech Syst & Vibrat, Shanghai 200240, Peoples R China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION

ISSN: 0253-4827

年份: 2022

期: 10

卷: 43

页码: 1485-1502

4 . 4

JCR@2022

4 . 4 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:49

JCR分区:1

中科院分区:1

被引次数:

WoS核心集被引频次: 6

SCOPUS被引频次: 6

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 10

归属院系:

在线人数/总访问数:587/4289263
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司