收录:
摘要:
An adaptive dynamic vibration absorber (ADVA) is designed for low-frequency vibration suppression. The leaf springs are applied as the tuning stiffness elements. The principle of variable stiffness is analyzed to obtain the effective range of the first natural frequency variation. A classic simply supported manipulator is selected as the controlled system. The coupled dynamic model of the manipulator-ADVA system is built to obtain the maximum damping efficiency and the vibration absorption capacity of the designed ADVA. An experimental platform is set up to verify the theoretical results. It is revealed that the ADVA can adjust the first natural frequency on a large scale by changing the curvature of the leaf springs. The amplitude of the manipulator is reduced obviously with the installation of the designed ADVA. Finally, based on the short-time Fourier transformation (STFT), a stepwise optimization algorithm is proposed to achieve a quick tuning of the natural frequency of the ADVA so that it can always coincide with the frequency of the prime structure. Through the above steps, the intelligent frequency tuning of the ADVA is realized with high vibration absorption performance in a wide frequency range.
关键词:
通讯作者信息:
电子邮件地址:
来源 :
APPLIED MATHEMATICS AND MECHANICS-ENGLISH EDITION
ISSN: 0253-4827
年份: 2022
期: 10
卷: 43
页码: 1485-1502
4 . 4
JCR@2022
4 . 4 0 0
JCR@2022
ESI学科: ENGINEERING;
ESI高被引阀值:49
JCR分区:1
中科院分区:1
归属院系: