• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Tu, Shanshan (Tu, Shanshan.) | Rehman, Sadaqat ur (Rehman, Sadaqat ur.) | Waqas, Muhammad (Waqas, Muhammad.) | Rehman, Obaid ur (Rehman, Obaid ur.) | Yang, Zhongliang (Yang, Zhongliang.) | Ahmad, Basharat (Ahmad, Basharat.) | Halim, Zahid (Halim, Zahid.) | Zhao, Wei (Zhao, Wei.)

收录:

EI Scopus SCIE

摘要:

Training of the convolution neural network (CNN) is a problem of global optimisation. This study proposed a hybrid modified particle swarm optimisation (MPSO) and conjugate gradient (CG) algorithm for efficient training of CNN. The training involves MPSO-CG to avoid trapping in local minima. Particularly, improvements in the MPSO by introducing a novel approach for control parameters, improved parameters updating criteria, a novel parameter in the velocity update equation, and fusion of the CG allows handling the issues in training CNN. In this study, the authors validate the proposed MPSO algorithm on three benchmark mathematical test functions and also compared with three different variants of the baseline particle swarm optimisation algorithm. Furthermore, the performance of the proposed MPSO-CG is also compared with other training algorithms focusing on the analysis of computational cost, convergence, and accuracy based on a standard problem specific to classification applications on CIFAR-10 dataset and face and skin detection dataset. © 2020 Institution of Engineering and Technology. All rights reserved.

关键词:

Global optimization Neural networks Classification (of information) Object recognition Functions Convolution Particle swarm optimization (PSO)

作者机构:

  • [ 1 ] [Tu, Shanshan]Faculty of Information Technology, Beijing University of Technology, Beijing, China
  • [ 2 ] [Rehman, Sadaqat ur]Faculty of Information Technology, Beijing University of Technology, Beijing, China
  • [ 3 ] [Rehman, Sadaqat ur]Beijing Geoscience Center, Schlumberger, China
  • [ 4 ] [Rehman, Sadaqat ur]Department of Computer Science, Namal Institute, Mianwali; 42250, Pakistan
  • [ 5 ] [Waqas, Muhammad]Faculty of Information Technology, Beijing University of Technology, Beijing, China
  • [ 6 ] [Waqas, Muhammad]Faculty of Computer Science and Engineering, Ghulam Ishaq Khan Institute of Engineering Science and Technology, China
  • [ 7 ] [Rehman, Obaid ur]Department of Electrical Engineering, Sarhad University of Science and IT, China
  • [ 8 ] [Yang, Zhongliang]Department of Electronic Engineering, Tsinghua University, Beijing, China
  • [ 9 ] [Ahmad, Basharat]Department of Electronic Engineering, Tsinghua University, Beijing, China
  • [ 10 ] [Halim, Zahid]Machine Intelligence Research Group (MlnG), Ghulam Ishaq Khan Institute of Engineering Sciences and Technology, Khyber Pakhtunkhwa; 23640, Pakistan
  • [ 11 ] [Zhao, Wei]Beijing Electro-Mechanical Engineering Institute, Beijing; 100074, China

通讯作者信息:

  • [rehman, sadaqat ur]department of computer science, namal institute, mianwali; 42250, pakistan;;[rehman, sadaqat ur]beijing geoscience center, schlumberger, china;;[rehman, sadaqat ur]faculty of information technology, beijing university of technology, beijing, china

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

IET Computer Vision

ISSN: 1751-9632

年份: 2020

期: 5

卷: 14

页码: 259-267

1 . 7 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:132

被引次数:

WoS核心集被引频次:

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

归属院系:

在线人数/总访问数:823/3913028
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司