Abstract:
针对无人驾驶汽车自动识别连续交警手势的需求,提出高度分层分区的图卷积交警手势识别方法.首先,依据人体部件在空间域内的自然、辅助和自身连接关系以及时间域内的关联关系建立交警手势时空图模型,并从图像序列卷积预测模型参数;其次,引入时空图卷积网络,提出以人物自然站立状态下时空图顶点相对高度差为标签的图卷积高度分层分区策略,打破现有分区策略对图结构的限制;最后,设计保留时间维度的空间域平均层网络输出架构,在减少特征数量的同时适配多对多序列预测模式,达到识别连续交警手势的目的.与领域内代表性方法的对比实验表明,该方法的识别准确率显著提高,不同手势之间混淆率仅为0.1%,Jaccard指数超过对比方法.
Keyword:
Reprint Author's Address:
Email:
Source :
计算机辅助设计与图形学学报
ISSN: 1003-9775
Year: 2022
Issue: 7
Volume: 34
Page: 1037-1046
Cited Count:
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count: -1
Chinese Cited Count:
30 Days PV: 1