• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

张兴兰 (张兴兰.) | 付娟娟 (付娟娟.)

摘要:

为了提高深度学习模型入侵检测任务的检测效率和分类的准确性,文章提出一种基于辅助熵减的神经常微分方程(E-ODENet)入侵检测模型.该入侵检测模型通过参数常微分方程定义连续的隐藏状态,不需要再分层传播梯度与更新参数,减少了内存的消耗,极大地提高了效率.使用信息瓶颈进行特征降维,提取与分类任务相关的主要信息,同时使用标签平滑和熵减损失来提高模型的泛化能力和准确性.在NSL-KDD数据集上进行训练和测试,测试得到的检测准确率为99.76%,证明该模型优于其他入侵检测模型.

关键词:

常微分方程 入侵检测 NSL-KDD 熵减损失

作者机构:

  • [ 1 ] [付娟娟]北京工业大学
  • [ 2 ] [张兴兰]北京工业大学

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

信息网络安全

ISSN: 1671-1122

年份: 2022

期: 6

页码: 1-8

被引次数:

WoS核心集被引频次:

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次: -1

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:491/5039412
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司