摘要:
围绕城市污水处理过程数据存在连续噪声和缺失的问题,提出一种基于动态融合局部异常因子(dynamic fusion local outlier factor,DFLOF)的污水处理过程数据清洗方法.首先,设计一种基于滑动窗口的数据动态分段方法,通过计算每个子段数据的均值、最大值和峰值区间信息获得数据异常属性值;其次,建立一种基于DFLOF的数据可信度评价模型,利用基于动态融合局部异常因子算法评估数据的可信度,保证异常数据检测和剔除的准确率;最后,提出一种基于径向基函数(radial basis function,RBF)神经网络的数据补偿方法对缺失数据进行补偿,实现污水处理过程数据的清洗.将该数据清洗方法应用于实际污水处理过程,实验结果表明:基于动态融合局部异常因子的数据清洗方法能够实现污水处理过程中异常数据的清洗,从而提高数据质量.
关键词:
通讯作者信息:
电子邮件地址: