• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

严爱军 (严爱军.) | 丁凯 (丁凯.)

摘要:

针对案例推理(case-based reasoning,CBR)检索过程中特征权重的分配结果直接影响CBR预测模型性能的问题,提出了一种基于自私牧群优化-模拟退火(selfish herd optimizer-simulated annealing,SHO-SA)算法的特征权重优化分配方法.首先,将CBR预测模型的均方根误差定义为SHO算法和SA算法中权重寻优的适应度;然后,通过SHO算法的牧群运动、捕食及恢复等步骤得到种群内最小均方根误差所对应的权重;最后,采用SA算法对上述权重进行随机搜索,从而获得特征权重的近似最优解.采用加州大学欧文分校(University of California Irvine,UCI)数据集中的5个标准回归数据集进行实验,结果表明该方法与一些典型的优化方法相比可以显著提高CBR预测模型的精度,说明SA算法能够改善SHO算法陷入局部最优的问题.

关键词:

分配权重 案例推理 模拟退火 自私牧群优化 案例检索 特征权重

作者机构:

  • [ 1 ] [丁凯]北京工业大学
  • [ 2 ] [严爱军]北京工业大学

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

北京工业大学学报

ISSN: 0254-0037

年份: 2022

期: 4

卷: 48

页码: 355-366

被引次数:

WoS核心集被引频次:

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次: -1

中文被引频次:

近30日浏览量: 0

在线人数/总访问数:198/5035729
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司