• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

胡军锋 (胡军锋.) | 郑彬 (郑彬.)

摘要:

近年来,基于ECG/PPG信号的血压测量方法已经在某些可穿戴设备上实现.但此类方法的检测精度尚未达到相关国际标准.本研究利用深度神经网络模型,对基于ECG/PPG信号的血压测量方法进行了深入研究,提高了该类方法的检测精度.首先,采用基于小波包的模态分解技术,从PPG信号中提取出心脏信号和呼吸信号,并将其与ECG信号同步.然后,采用卷积神经网络(convolutional neural network,CNN)基于上述信号建立血压检测模型.通过选用从MIMIC-Ⅲ数据集中筛选出的5776条数据作为实验数据,结果显示,当使用ECG/呼吸/心脏信号测量血压时,CNN模型的收缩压检测精度为(4.6852±6.0730)mm-Hg,舒张压的检测精度为(2.5340±3.9860)mmHg,均达到美国医疗器械促进协会(AAMI)标准和英国高血压协会(BHS)标准的最高级.当使用呼吸/心脏信号测量血压时,CNN模型的舒张压检测精度达到AAMI标准和BHS标准的最高级,收缩压检测精度未达到AAMI标准.结果表明,模态分解技术与ECG信号结合后,可以有效提高对血压的检测精度.

关键词:

光电容积脉搏波描记法 心电图 信号处理 小波包变换 卷积神经网络模型 血压

作者机构:

  • [ 1 ] [胡军锋]北京工业大学理学部,北京 100022
  • [ 2 ] [郑彬]北京工业大学理学部,北京 100022

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

生物医学工程研究

ISSN: 1672-6278

年份: 2022

期: 1

卷: 41

页码: 46-54

被引次数:

WoS核心集被引频次:

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次: -1

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:310/5047155
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司