• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

宗先鹏 (宗先鹏.) | 王彤彤 (王彤彤.)

摘要:

随着信息时代的来临,如何从海量数据中快速、有效地挖掘有用信息是目前面临的新挑战.子抽样方法作为大规模数据分析的有效工具,已经受到国内外学者的广泛关注.不过,传统的子抽样方法通常没有考虑到模型的不确定性.当模型假设不正确时,后面的统计推断将会出现偏差,甚至导致错误的结论.为了解决该问题,文章利用频率模型平均的方法构建了子抽样模型平均估计(简称SSMA估计).理论上,文章证明了SSMA估计是全部数据下模型平均估计的一个渐近无偏且相合的估计.另外,我们基于Hansen (2007)的Mallows模型平均方法提出了SSMA估计的权重选择准则,并证明了方差已知和未知时权重估计的渐近最优性.在这些理论性质的研究中,文章同时考虑了模型和抽样设计带来的双重随机性.最后,数值分析进一步说明了所提出方法的有效性.

关键词:

Mallows准则 渐近最优性 大数据分析 模型平均 子抽样方法

作者机构:

  • [ 1 ] [宗先鹏]北京工业大学
  • [ 2 ] [王彤彤]首都师范大学

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

系统科学与数学

ISSN: 1000-0577

年份: 2022

期: 1

卷: 42

页码: 109-132

被引次数:

WoS核心集被引频次:

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次: -1

中文被引频次:

近30日浏览量: 0

在线人数/总访问数:618/5044790
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司