• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Zhang, Xinfeng (Zhang, Xinfeng.) | Guo, Yutong (Guo, Yutong.) | Cai, Yiheng (Cai, Yiheng.) | Sun, Meng (Sun, Meng.)

收录:

EI PKU CSCD

摘要:

The disadvantage of tongue image segmentation in traditional Chinese medicine are low accuracy, slow segmentation speed and manual calibration of candidate regions.To solve these problems, we propose an end-to-end tongue image segmentation algorithm. Compared with the traditional tongue segmentation algorithm, more accurate segmentation results can be obtained by the proposed method which does not need any manual operation. Firstly, the atrous convolution algorithm is used to increase the feature map of the network without increasing the parameters. Secondly, the atrous spatial pyramid pooling (ASPP) module is used to enable the network to learn the multi-scale feature of the tongue image through different receptive fields. Finally, the deep convolutional neural networks (DCNN) are combined with fully connected conditional random fields (CRF) to refine the edge of the segmented tongue image. The experimental results show that the proposed method outperforms traditional tongue image segmentation algorithm and popular DCNN with higher segmentation accuracy, and the mean intersection over union reaches 95.41%. © 2019, Editorial Board of JBUAA. All right reserved.

关键词:

Convolution Convolutional neural networks Deep learning Deep neural networks Image segmentation Medicine Random processes Semantics

作者机构:

  • [ 1 ] [Zhang, Xinfeng]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 2 ] [Guo, Yutong]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 3 ] [Cai, Yiheng]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China
  • [ 4 ] [Sun, Meng]Faculty of Information Technology, Beijing University of Technology, Beijing; 100124, China

通讯作者信息:

  • [zhang, xinfeng]faculty of information technology, beijing university of technology, beijing; 100124, china

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

Journal of Beijing University of Aeronautics and Astronautics

ISSN: 1001-5965

年份: 2019

期: 12

卷: 45

页码: 2364-2374

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 12

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 3

归属院系:

在线人数/总访问数:645/3575073
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司