• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Bao, Zhenshan (Bao, Zhenshan.) | Fu, Guohang (Fu, Guohang.) | Zhang, Wenbo (Zhang, Wenbo.) | Zhan, Kang (Zhan, Kang.) | Guo, Junnan (Guo, Junnan.)

收录:

EI Scopus SCIE

摘要:

The effective implementation of quantization depends not only on the specific task but also on the hardware resources. This article presents a hardware-aware customized quantization method for convolutional neural networks. We propose a learnable parameter soft clipping full integer quantization (LSFQ), which includes weight and activation quantization with the learnable clipping parameters. Moreover, the LSFQ accelerator architecture is customized on the field-programmable gate array (FPGA) platform to verify the hardware awareness of our method, in which DSP48E2 is designed to realize the parallel computation of six low-bit integer multiplications. The results showed that the accuracy loss of LSFQ is less than 1% compared with the full-precision models including VGG7, mobile-net v2 in CIFAR10, and CIFAR100. An LSFQ accelerator was demonstrated at the 57th IEEE/ACM Design Automation Conference System Design Contest (DAC-SDC) and won the championship at the FPGA track.

关键词:

Accelerator architectures Design automation Computer architecture Quantization (signal) Convolutional neural networks Field programmable gate arrays Training data Neural networks

作者机构:

  • [ 1 ] [Bao, Zhenshan]Beijing Univ Technol, Beijing, Peoples R China
  • [ 2 ] [Fu, Guohang]Beijing Univ Technol, Beijing, Peoples R China
  • [ 3 ] [Zhang, Wenbo]Beijing Univ Technol, Beijing, Peoples R China
  • [ 4 ] [Zhan, Kang]Beijing Univ Technol, Beijing, Peoples R China
  • [ 5 ] [Guo, Junnan]Beijing Univ Technol, Beijing, Peoples R China

通讯作者信息:

查看成果更多字段

相关关键词:

相关文章:

来源 :

IEEE MICRO

ISSN: 0272-1732

年份: 2022

期: 2

卷: 42

页码: 8-15

3 . 6

JCR@2022

3 . 6 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:46

JCR分区:2

中科院分区:3

被引次数:

WoS核心集被引频次: 5

SCOPUS被引频次: 7

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:389/4954730
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司