• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Liu, Fang (Liu, Fang.) | Wang, Xin (Wang, Xin.) | Lu, Lixia (Lu, Lixia.) | Huang, Guangwei (Huang, Guangwei.) | Wang, Hongjuan (Wang, Hongjuan.)

收录:

EI Scopus PKU CSCD

摘要:

A landform image classification algorithm based on sparse coding and convolutional neural network is proposed. The non-subsampled Contourlet transform is applied to the training samples for multi-scale decomposition. The images are selected in the training samples to learn the local features by using sparse coding, and the feature vectors are sorted. The feature vectors with larger gray-scale mean gradients are selected to initialize the convolutional neural network convolution kernel. The results show that the proposed algorithm can obtain better classification results than traditional underlying visual features, which effectively avoids the problem of network training falling into local optimum, and improves the classification accuracy of unmanned aerial vehicles landing landform in natural scenes. © 2019, Chinese Lasers Press. All right reserved.

关键词:

Antennas Computer vision Convolution Convolutional neural networks Image classification Image coding Image processing Landforms Network coding Sampling

作者机构:

  • [ 1 ] [Liu, Fang]Information Department, Beijing University of Technology, Beijing; 100022, China
  • [ 2 ] [Wang, Xin]Information Department, Beijing University of Technology, Beijing; 100022, China
  • [ 3 ] [Lu, Lixia]Information Department, Beijing University of Technology, Beijing; 100022, China
  • [ 4 ] [Huang, Guangwei]Information Department, Beijing University of Technology, Beijing; 100022, China
  • [ 5 ] [Wang, Hongjuan]Information Department, Beijing University of Technology, Beijing; 100022, China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

Acta Optica Sinica

ISSN: 0253-2239

年份: 2019

期: 4

卷: 39

被引次数:

WoS核心集被引频次: 0

SCOPUS被引频次: 2

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 2

归属院系:

在线人数/总访问数:795/3589484
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司