• Complex
  • Title
  • Keyword
  • Abstract
  • Scholars
  • Journal
  • ISSN
  • Conference
搜索

Author:

Zhao, Mingyan (Zhao, Mingyan.) | Gao, Jingfeng (Gao, Jingfeng.) (Scholars:高景峰) | Zhang, Haoran (Zhang, Haoran.) | Cui, Yingchao (Cui, Yingchao.) | Wang, Zhiqi (Wang, Zhiqi.) | Zhao, Yifan (Zhao, Yifan.) | Zhang, Yi (Zhang, Yi.) | Liu, Ying (Liu, Ying.)

Indexed by:

EI Scopus SCIE

Abstract:

Surfactants could influence sludge morphology and disinfectants were linked to antibiotic resistance genes (ARGs). Thus, the response of activated sludge and ARGs to long-term quaternary ammonium compounds (QACs) exposure required further investigation, which is a popular surfactant and disinfectant. Here, three sequencing batch reactors were fed with 5 mg/L most frequently detected QACs (dodecyl trimethyl ammonium chloride (ATMAC C12), dodecyl benzyl dimethyl ammonium chloride (BAC C12) and didodecyl dimethyl ammonium chloride (DADMAC C12)) for 180 d. The long-term inhibitory effect on denitrification ranked: DADMAC C12 > BAC C12 > ATMAC C12. Besides, obvious granular sludge promoted by the increase of alpha-Helix/(8-Sheet + Random coil) appeared in DADMAC C12 system. Moreover, intracellular ARGs increased when denitrification systems encountered QACs acutely but decreased in systems chronically exposed to QACs. Although replication and repair metabolism in ATMAC C12 system was higher, ATMAC C12 significantly promoted proliferation of extracellular ARGs. It was noteworthy that the propagation risk of extracellular ARGs in sludge increased significantly during sludge granulation process, and intracellular sul2 genes in sludge and water both increased with the granular diameter in DADMAC C12 system. The universal utilization of QACs may enhance antibiotic resistance of bacteria in wastewater treatment plants, deserving more attention.

Keyword:

Intracellular and extracellular antibiotic&nbsp Denitrification system Bacterial community structure resistance genes Sludge granulation Quaternary ammonium compounds

Author Community:

  • [ 1 ] [Zhao, Mingyan]Beijing Univ Technol, Fac Environm & Life, Natl Engn Lab Adv Municipal Wastewater Treatment &, Beijing 100124, Peoples R China
  • [ 2 ] [Gao, Jingfeng]Beijing Univ Technol, Fac Environm & Life, Natl Engn Lab Adv Municipal Wastewater Treatment &, Beijing 100124, Peoples R China
  • [ 3 ] [Zhang, Haoran]Beijing Univ Technol, Fac Environm & Life, Natl Engn Lab Adv Municipal Wastewater Treatment &, Beijing 100124, Peoples R China
  • [ 4 ] [Cui, Yingchao]Beijing Univ Technol, Fac Environm & Life, Natl Engn Lab Adv Municipal Wastewater Treatment &, Beijing 100124, Peoples R China
  • [ 5 ] [Wang, Zhiqi]Beijing Univ Technol, Fac Environm & Life, Natl Engn Lab Adv Municipal Wastewater Treatment &, Beijing 100124, Peoples R China
  • [ 6 ] [Zhao, Yifan]Beijing Univ Technol, Fac Environm & Life, Natl Engn Lab Adv Municipal Wastewater Treatment &, Beijing 100124, Peoples R China
  • [ 7 ] [Zhang, Yi]Beijing Univ Technol, Fac Environm & Life, Natl Engn Lab Adv Municipal Wastewater Treatment &, Beijing 100124, Peoples R China
  • [ 8 ] [Liu, Ying]Beijing Univ Technol, Fac Environm & Life, Natl Engn Lab Adv Municipal Wastewater Treatment &, Beijing 100124, Peoples R China

Reprint Author's Address:

  • [Gao, Jingfeng]Beijing Univ Technol, Fac Environm & Life, Natl Engn Lab Adv Municipal Wastewater Treatment &, Beijing 100124, Peoples R China;;

Show more details

Related Keywords:

Source :

JOURNAL OF HAZARDOUS MATERIALS

ISSN: 0304-3894

Year: 2023

Volume: 445

1 3 . 6 0 0

JCR@2022

ESI Discipline: ENGINEERING;

ESI HC Threshold:19

Cited Count:

WoS CC Cited Count: 28

SCOPUS Cited Count: 33

ESI Highly Cited Papers on the List: 0 Unfold All

WanFang Cited Count:

Chinese Cited Count:

30 Days PV: 0

Affiliated Colleges:

Online/Total:704/5296774
Address:BJUT Library(100 Pingleyuan,Chaoyang District,Beijing 100124, China Post Code:100124) Contact Us:010-67392185
Copyright:BJUT Library Technical Support:Beijing Aegean Software Co., Ltd.