• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Dan, Qiongpeng (Dan, Qiongpeng.) | Du, Rui (Du, Rui.) | Wang, Tong (Wang, Tong.) | Sun, Tiantian (Sun, Tiantian.) | Li, Xiyao (Li, Xiyao.) | Zhang, Qiong (Zhang, Qiong.) | Peng, Yongzhen (Peng, Yongzhen.) (学者:彭永臻)

收录:

EI Scopus SCIE

摘要:

The application of partial nitritation-anammox (PNA) process suffers severe obstacles due to the instability of partial nitritation (PN) process. This study sought to evaluate the feasibility of endogenous partial denitratation (EPD) as a remediation or alternative to supply nitrite for the unstable PNA process. A novel strategy of optimal organics utilization through pre-anaerobic carbon storage and post-anoxic endogenous denitrification coupled with anammox was developed in a single-stage bioreactor treating actual municipal wastewater with low C/N (similar to 3.2). Specifically, the undesired NO2-/NH4+ ratio (2.4 to 0.04) and nitrate accumulation were obtained by increasing the aeration rate (0.6 to 1.8 L/min) to simulate the PN instability. Delightedly, advanced nitrogen removal efficiency (92.1%) was maintained despite a dramatic decrease in nitrite accumulation ratio from 97.6% to 2.6%. This was attributed to the significant increase in anammox contribution to total nitrogen removal from 30.2% to 80.5%. The steady nitrite flux supplied from EPD coupled with PN (EPD contribution increased from 0 to 97.0%) was assumed to be the main reason for the continually increasing abundance and bioactivity of anammox bacteria. Both the anammox bacteria (1.5%, Ca. Brocadia) and glycogen accumulating organisms (6.0%, responsible for EPD) were enriched and coexisted stably in the single reactor. Our study confirms that coupling EPD with anammox has great potential as a remediation for the unstable mainstream PNA process.

关键词:

Municipal wastewater Endogenous partial denitratation Mainstream anammox Nutrient removal Partial nitritation

作者机构:

  • [ 1 ] [Dan, Qiongpeng]Beijing Univ Technol, Engn Res Ctr Beijing, Natl Engn Lab Adv Municipal Wastewater Treatment &, Beijing 100124, Peoples R China
  • [ 2 ] [Du, Rui]Beijing Univ Technol, Engn Res Ctr Beijing, Natl Engn Lab Adv Municipal Wastewater Treatment &, Beijing 100124, Peoples R China
  • [ 3 ] [Wang, Tong]Beijing Univ Technol, Engn Res Ctr Beijing, Natl Engn Lab Adv Municipal Wastewater Treatment &, Beijing 100124, Peoples R China
  • [ 4 ] [Sun, Tiantian]Beijing Univ Technol, Engn Res Ctr Beijing, Natl Engn Lab Adv Municipal Wastewater Treatment &, Beijing 100124, Peoples R China
  • [ 5 ] [Li, Xiyao]Beijing Univ Technol, Engn Res Ctr Beijing, Natl Engn Lab Adv Municipal Wastewater Treatment &, Beijing 100124, Peoples R China
  • [ 6 ] [Zhang, Qiong]Beijing Univ Technol, Engn Res Ctr Beijing, Natl Engn Lab Adv Municipal Wastewater Treatment &, Beijing 100124, Peoples R China
  • [ 7 ] [Peng, Yongzhen]Beijing Univ Technol, Engn Res Ctr Beijing, Natl Engn Lab Adv Municipal Wastewater Treatment &, Beijing 100124, Peoples R China

通讯作者信息:

  • [Peng, Yongzhen]Beijing Univ Technol, Engn Res Ctr Beijing, Natl Engn Lab Adv Municipal Wastewater Treatment &, Beijing 100124, Peoples R China;;

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

CHEMICAL ENGINEERING JOURNAL

ISSN: 1385-8947

年份: 2023

卷: 454

1 5 . 1 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:19

被引次数:

WoS核心集被引频次: 17

SCOPUS被引频次: 19

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 6

归属院系:

在线人数/总访问数:572/4289713
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司