Indexed by:
Abstract:
This article proposes a low-temperature free radical polymerization method of anti-clay silane-modified polycarboxylic superplasticizer (S-PCE). Through molecular structure design, strong adsorption silane coupling agent (gamma-methylacrylloxy propyl trimethoxysilane, KH570) was introduced in S-PCE. A series of tests and theoretical studies were carried out to obtain chemical structure characterization, dispersion ability, montmorillonite (MMT) tolerance and adsorption behavior of S-PCE. The results showed that compared with the traditional methylallyl alcohol polyoxyethylene ether (HPEG) type PCE (H-PCE) and low clay-sensitivity Naphthalene-based superplasticizer (BNS), S-PCE possessed better dispersion and fluidity retention ability of cement particles in clay-involved environment, and could appropriately improve mechanical properties of concrete. It is mainly due to that silanol (Si-OH) groups can be dehydrated and bonded to silanol on the surface of cement particles and MMT. Thus, the competitive adsorption advantage of MMT was lowered, the possibility of S-PCE binding with cement particle was greatly improved and the intercalation of polyoxyethylene side chain was avoided.
Keyword:
Reprint Author's Address:
Email:
Source :
CONSTRUCTION AND BUILDING MATERIALS
ISSN: 0950-0618
Year: 2022
Volume: 331
7 . 4
JCR@2022
7 . 4 0 0
JCR@2022
ESI Discipline: MATERIALS SCIENCE;
ESI HC Threshold:66
JCR Journal Grade:1
CAS Journal Grade:1
Cited Count:
WoS CC Cited Count: 14
SCOPUS Cited Count:
ESI Highly Cited Papers on the List: 0 Unfold All
WanFang Cited Count:
Chinese Cited Count:
30 Days PV: 1
Affiliated Colleges: