• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Li, Xiangchen (Li, Xiangchen.) | Peng, Yongzhen (Peng, Yongzhen.) | Zhang, Jingwen (Zhang, Jingwen.) | Du, Rui (Du, Rui.)

收录:

EI Scopus SCIE

摘要:

Anaerobic ammonium oxidation (anammox) has been widely accepted as an energy-efficient approach for nitrogen removal from high-strength sidestreams. However, insufficient nitrogen removal due to the excessive NO3--N residue represents the major challenge, especially at low temperature. In this study, highly efficient and synchronous nitrogen removal from ammonia-rich wastewater and real domestic wastewater was achieved via a novel anammox-mediated treatment by coupling with double-nitrite-shunt process in two-stage sequencing batch reactors. Stable partial nitrification/anammox (PNA) was successfully developed, while the total nitrogen (TN) removal efficiency was limited to 86.9 % due to excessive NO3--N accumulation. Significantly, integration with partial denitrification (NO3--N. NO2--N) coupling anammox (PDA) process offered an efficient solution, which transformed the overproduced NO3--N of PNA to NO2--N and subsequently completely removed with NH4+-N via anammox pathway by mixing with real domestic wastewater (NH4+-N of 69.0 mg/L, COD of 203.6 mg/L). Excellent nitrogen removal performance with average TN removal efficiency of 98.4 % and high-quality effluent with average TN of 4.9 mg/L was maintained despite the temperature dropping to 13.0 degrees C. S-16 rRNA gene sequencing unveiled the different community of anammox bacteria cooperating stably with AOB and denitrifiers in the two systems. Compared with conventional nitrification/denitrification methods, the novel PNA-PDA process not only enabled 60% saving in aeration energy and 95.5% saving in organic carbon for ammonia-rich wastewater treatment, but also required no aeration energy for domestic wastewater treatment. Overall, this study provides a promising application with simple-control strategy for cost-effective and synchronous nitrogen removal from sidestreams and mainstreams.

关键词:

Partial denitrification (PD) Partial nitrification (PN) Anammox Domestic wastewater Ammonia-rich wastewater Nitrogen removal

作者机构:

  • [ 1 ] [Li, Xiangchen]Beijing Univ Technol, Engn Res Ctr Beijing, Natl Engn Lab Adv Municipal Wastewater Treatment, Beijing 100124, Peoples R China
  • [ 2 ] [Peng, Yongzhen]Beijing Univ Technol, Engn Res Ctr Beijing, Natl Engn Lab Adv Municipal Wastewater Treatment, Beijing 100124, Peoples R China
  • [ 3 ] [Zhang, Jingwen]Beijing Univ Technol, Engn Res Ctr Beijing, Natl Engn Lab Adv Municipal Wastewater Treatment, Beijing 100124, Peoples R China
  • [ 4 ] [Du, Rui]Beijing Univ Technol, Engn Res Ctr Beijing, Natl Engn Lab Adv Municipal Wastewater Treatment, Beijing 100124, Peoples R China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

CHEMICAL ENGINEERING JOURNAL

ISSN: 1385-8947

年份: 2021

卷: 425

1 5 . 1 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:87

JCR分区:1

被引次数:

WoS核心集被引频次: 28

SCOPUS被引频次: 31

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 4

归属院系:

在线人数/总访问数:1170/4286898
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司