• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Wang, Shaofan (Wang, Shaofan.) | Zhao, Yongbo (Zhao, Yongbo.) | Zhang, Yong (Zhang, Yong.) | Hu, Yongli (Hu, Yongli.) | Yin, Baocai (Yin, Baocai.) (学者:尹宝才)

收录:

EI Scopus SCIE

摘要:

Spatiotemporal traffic data exhibit multi-granular low-rank structure due to their periodicity among different timelines. Traditional low rank data completion methods fail to characterize such properties and produce unsatisfactory results for data imputation. In this paper, a tensorial weighted Schatten-p norm minimization (TWSN) is proposed for spatiotemporal traffic data imputation. TWSN consists of an approximation term and a low-rank regularization term over the recovered tensor data, where the latter is a combination of the weighted Schatten-p norm in the matrix form of each mode of the tensor. For each mode, TWSN utilizes a selection scheme of the mode-wise weights to capture different properties of singular values of each mode of the tensor. Overall, TWSN not only plays a balancing role between the rank function and the nuclear norm, but also captures the anisotropic correlation of singular values of each mode of the tensor. TWSN is evaluated on four real-world datasets with different ping frequencies (2, 5, 10 min) and its performance is compared with several state-of-the-art methods. The experimental results show that TWSN outperforms other methods under various data missing scenarios.

关键词:

作者机构:

  • [ 1 ] [Wang, Shaofan]Beijing Univ Technol, Beijing Inst Artificial Intelligence, Beijing Key Lab Multimedia & Intelligent Software, Fac Informat Technol, Beijing, Peoples R China
  • [ 2 ] [Zhao, Yongbo]Beijing Univ Technol, Beijing Inst Artificial Intelligence, Beijing Key Lab Multimedia & Intelligent Software, Fac Informat Technol, Beijing, Peoples R China
  • [ 3 ] [Zhang, Yong]Beijing Univ Technol, Beijing Inst Artificial Intelligence, Beijing Key Lab Multimedia & Intelligent Software, Fac Informat Technol, Beijing, Peoples R China
  • [ 4 ] [Hu, Yongli]Beijing Univ Technol, Beijing Inst Artificial Intelligence, Beijing Key Lab Multimedia & Intelligent Software, Fac Informat Technol, Beijing, Peoples R China
  • [ 5 ] [Yin, Baocai]Beijing Univ Technol, Beijing Inst Artificial Intelligence, Beijing Key Lab Multimedia & Intelligent Software, Fac Informat Technol, Beijing, Peoples R China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

IET INTELLIGENT TRANSPORT SYSTEMS

ISSN: 1751-956X

年份: 2022

期: 7

卷: 16

页码: 926-939

2 . 7

JCR@2022

2 . 7 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:49

JCR分区:3

中科院分区:4

被引次数:

WoS核心集被引频次:

SCOPUS被引频次: 5

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:613/4958457
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司