• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Chen, Meijuan (Chen, Meijuan.) | Zhuo, Li (Zhuo, Li.) | Zhu, Ziyao (Zhu, Ziyao.) | Yin, Hongxia (Yin, Hongxia.) | Li, Xiaoguang (Li, Xiaoguang.) | Wang, Zhenchang (Wang, Zhenchang.)

收录:

EI Scopus SCIE

摘要:

Accurate vestibule segmentation for CT images is of great significance for the clinical diagnosis of congenital ear malformations and cochlear implant. However, it is still a challenging task due to extremely small size and irregular shape of vestibule. Here, a vestibule segmentation network for CT images is proposed under the basic encoder-decoder framework. Firstly, a residual block based on channel attention mechanism, named Res-CA block, is designed to guide the network to enhance the important features for the segmentation tasks while suppressing the irrelevant ones. And then, a global context-aware pyramid feature extraction (GCPFE) module is proposed to capture multi-receptive-field global context information. Finally, active contour with elastic (ACE) loss function is adopted to guide network learning more detailed information of the boundary. Furthermore, deep supervision (DS) mechanism is employed to locate the boundaries finely, improving the robustness of the network. The experiments are conducted on the self-established VestibuleDataset and UHRCT-Dataset, as well as publicly available retinal dataset, namely DRIVE, to comprehensively verify the robustness and generalization capability of the proposed segmentation network. The experimental results show that the proposed network can achieve a superior performance.

关键词:

vestibule segmentation deep supervision global context-aware pyramid feature extraction active contour with elastic (ACE) loss

作者机构:

  • [ 1 ] [Chen, Meijuan]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 2 ] [Zhuo, Li]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 3 ] [Zhu, Ziyao]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 4 ] [Li, Xiaoguang]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 5 ] [Yin, Hongxia]Capital Med Univ, Beijing Friendship Hosp, Dept Radiol, Beijing, Peoples R China
  • [ 6 ] [Wang, Zhenchang]Capital Med Univ, Beijing Friendship Hosp, Dept Radiol, Beijing, Peoples R China
  • [ 7 ] [Zhuo, Li]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China

通讯作者信息:

  • [Zhuo, Li]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China;;

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

IET IMAGE PROCESSING

ISSN: 1751-9659

年份: 2022

期: 4

卷: 17

页码: 1267-1279

2 . 3

JCR@2022

2 . 3 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:49

JCR分区:3

中科院分区:4

被引次数:

WoS核心集被引频次: 1

SCOPUS被引频次: 2

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:502/4953592
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司