• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Ji, Junzhong (Ji, Junzhong.) (学者:冀俊忠) | Liu, Jinduo (Liu, Jinduo.) | Han, Lu (Han, Lu.) | Wang, Feipeng (Wang, Feipeng.)

收录:

EI Scopus SCIE

摘要:

Estimating effective connectivity from functional magnetic resonance imaging (fMRI) time series data has become a very hot topic in neuroinformatics and brain informatics. However, it is hard for the current methods to accurately estimate the effective connectivity due to the high noise and small sample size of fMRI data. In this paper, we propose a novel framework for estimating effective connectivity based on recurrent generative adversarial networks, called EC-RGAN. The proposed framework employs the generator that consists of a set of effective connectivity generators based on recurrent neural networks to generate the fMRI time series of each brain region, and uses the discriminator to distinguish between the joint distributions of the real and generated fMRI time series. When the model is well-trained and generated fMRI data is similar to real fMRI data, EC-RGAN outputs the effective connectivity by means of the causal parameters of the effective connectivity generators. Experimental results on both simulated and real-world fMRI time series data demonstrate the efficacy of our proposed framework.

关键词:

generative adversarial networks Brain modeling Data models Mathematical model Generators Functional magnetic resonance imaging fMRI time series Logic gates Effective connectivity recurrent neural networks Time series analysis

作者机构:

  • [ 1 ] [Ji, Junzhong]Beijing Univ Technol, Fac Informat Technol, Beijing Artificial Intelligence Inst, Beijing Municipal Key Lab Multimedia & Intelligen, Beijing 100124, Peoples R China
  • [ 2 ] [Liu, Jinduo]Beijing Univ Technol, Fac Informat Technol, Beijing Artificial Intelligence Inst, Beijing Municipal Key Lab Multimedia & Intelligen, Beijing 100124, Peoples R China
  • [ 3 ] [Han, Lu]Beijing Univ Technol, Fac Informat Technol, Beijing Artificial Intelligence Inst, Beijing Municipal Key Lab Multimedia & Intelligen, Beijing 100124, Peoples R China
  • [ 4 ] [Wang, Feipeng]Beijing Univ Technol, Fac Informat Technol, Beijing Artificial Intelligence Inst, Beijing Municipal Key Lab Multimedia & Intelligen, Beijing 100124, Peoples R China

通讯作者信息:

查看成果更多字段

相关关键词:

相关文章:

来源 :

IEEE TRANSACTIONS ON MEDICAL IMAGING

ISSN: 0278-0062

年份: 2021

期: 12

卷: 40

页码: 3326-3336

1 0 . 6 0 0

JCR@2022

ESI学科: CLINICAL MEDICINE;

ESI高被引阀值:75

JCR分区:1

被引次数:

WoS核心集被引频次: 14

SCOPUS被引频次: 16

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 5

归属院系:

在线人数/总访问数:3291/4241023
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司