• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Liu, Shuang (Liu, Shuang.) | Ma, Limin (Ma, Limin.) | Zhen, Cheng (Zhen, Cheng.) | Wang, Yishu (Wang, Yishu.) | Li, Dan (Li, Dan.) | Guo, Fu (Guo, Fu.) (学者:郭福)

收录:

EI Scopus SCIE

摘要:

Crystalline and amorphous cobalt-phosphorus (Co-P) coatings have their own advantages in interfacial dif-fusion resistance and mechanical ductility of solder joints, respectively, but it cannot be better at both. In this work, the hybrid crystalline-amorphous Co-P coating (Co-9.1 at.% P) was fabricated and applied on the Cu/Sn interface by controlling the crystallinity through compositional design. Combining the advan-tages of crystalline and amorphous Co-P, strategies for solder joints with high shear strength, ductile inter -metallic compounds (IMCs) and slow interface consumption was proposed. The evolution, microstructure, phase, and mechanical properties of the Co-Sn, Co-Sn-P and P-rich layers in solid-state diffusion were sys-tematically characterized and tested by means of SEM, EPMA, EBSD, TEM, nanoindentation, and shear test. It was found that the hybrid Co-P coating achieved a low consumption rate, 14.2 nm/h, attributing to the par-tially crystalline structure and the Co-Sn-P exfoliation behavior. In addition, solder joints containing large -thickness ductile Co-Sn IMCs, 3.2-3.6 GPa of hardness, was established. The shear strength after aging reached 75.4 MPa relying on the large thickness of Co-Sn IMCs. Severe mechanical loads would be able to be withstand by virtue of the plastic deformation of ductile IMCs. Hybrid crystalline-amorphous Co-P would be a promising interface material in microelectronic packaging.(c) 2022 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

关键词:

Intermetallic compound Hybrid coating Ductility Exfoliation Diffusion resistance Cobalt-phosphorus

作者机构:

  • [ 1 ] [Liu, Shuang]Beijing Univ Technol, Fac Mat & Mfg, Beijing 100124, Peoples R China
  • [ 2 ] [Ma, Limin]Beijing Univ Technol, Fac Mat & Mfg, Beijing 100124, Peoples R China
  • [ 3 ] [Zhen, Cheng]Beijing Univ Technol, Fac Mat & Mfg, Beijing 100124, Peoples R China
  • [ 4 ] [Wang, Yishu]Beijing Univ Technol, Fac Mat & Mfg, Beijing 100124, Peoples R China
  • [ 5 ] [Li, Dan]Beijing Univ Technol, Fac Mat & Mfg, Beijing 100124, Peoples R China
  • [ 6 ] [Guo, Fu]Beijing Univ Technol, Fac Mat & Mfg, Beijing 100124, Peoples R China
  • [ 7 ] [Liu, Shuang]Beijing Univ Technol, Key Lab Adv Funct Mat, Educ Minist China, Beijing 100124, Peoples R China
  • [ 8 ] [Ma, Limin]Beijing Univ Technol, Key Lab Adv Funct Mat, Educ Minist China, Beijing 100124, Peoples R China
  • [ 9 ] [Zhen, Cheng]Beijing Univ Technol, Key Lab Adv Funct Mat, Educ Minist China, Beijing 100124, Peoples R China
  • [ 10 ] [Wang, Yishu]Beijing Univ Technol, Key Lab Adv Funct Mat, Educ Minist China, Beijing 100124, Peoples R China
  • [ 11 ] [Li, Dan]Beijing Univ Technol, Key Lab Adv Funct Mat, Educ Minist China, Beijing 100124, Peoples R China
  • [ 12 ] [Guo, Fu]Beijing Univ Technol, Key Lab Adv Funct Mat, Educ Minist China, Beijing 100124, Peoples R China
  • [ 13 ] [Guo, Fu]Beijing Union Univ, Coll Robot, Beijing 100101, Peoples R China

通讯作者信息:

查看成果更多字段

相关关键词:

来源 :

MATERIALS & DESIGN

ISSN: 0264-1275

年份: 2022

卷: 224

8 . 4

JCR@2022

8 . 4 0 0

JCR@2022

ESI学科: MATERIALS SCIENCE;

ESI高被引阀值:66

JCR分区:1

中科院分区:2

被引次数:

WoS核心集被引频次: 10

SCOPUS被引频次: 11

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:500/4957675
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司