• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Wang, Ping (Wang, Ping.) | Si, Nong (Si, Nong.) | Tong, Haopeng (Tong, Haopeng.)

收录:

CPCI-S EI Scopus

摘要:

Named entity recognition is a practical approach to automatically identifying named entities in text and data. Towards the vast amount of data generated in our daily life, Artificial Intelligence (AI) with economical but powerful computing resources are inevitably becoming the most appropriate method for name entities classification. However, the results of currently popular methods may also lack the aiming super high accuracy to specific data and the interests of the subscribers. This paper proposes a named entity recognition model based on entity trigger reinforcement learning for automatic Chinese recognition. Unlike existing named entity recognition methods, the proposed method can support multiple inputs. The accuracy proof and performance evaluation show that the proposed method is provable robotic in entity categories classification and efficient in practice.

关键词:

CRF named entity recognition word2vec BiLSTM entity triggers

作者机构:

  • [ 1 ] [Wang, Ping]Beijing Polytech, Sch Econ & Management, Beijing, Peoples R China
  • [ 2 ] [Si, Nong]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China
  • [ 3 ] [Tong, Haopeng]Beijing Univ Technol, Fac Informat Technol, Beijing, Peoples R China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

2022 IEEE 2ND INTERNATIONAL CONFERENCE ON COMPUTER COMMUNICATION AND ARTIFICIAL INTELLIGENCE (CCAI 2022)

年份: 2022

页码: 43-48

被引次数:

WoS核心集被引频次: 2

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:543/4983954
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司