• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Pan, Yuyan Annie (Pan, Yuyan Annie.) | Guo, Jifu (Guo, Jifu.) | Chen, Yanyan (Chen, Yanyan.) (学者:陈艳艳) | Li, Siyang (Li, Siyang.) | Li, Wenhao (Li, Wenhao.)

收录:

EI Scopus SCIE

摘要:

Traffic state estimation (TSE), which reconstructs the traffic variables (e.g., speed, flow) on road segments using partially observed data, plays an essential role in intelligent transportation systems. Generally, traffic estimation problems can be divided into two categories: model-driven approaches and data-driven approaches. The model-driven method is commonly used to solve TSE efficiently and calibrate the parameters of these models. The data-driven method requires a large amount of historical observed traffic data in order to improve performance accurately. In order to combine the advantages of model-driven and data-driven methods, this paper proposed a hybrid framework incorporating the traffic flow model into deep learning (TFMDL) modeling that contains both model-driven and data-driven components. This paper focuses on highway TSE with observed data from loop detectors. We build a hybrid cost function to adjust the weights of model-driven and data-driven proportions. We then evaluate the proposed framework using the open-access performance measurement system (PMS) dataset on a corridor of US I-405 in Los Angeles, California. The experimental results show the advantages of the proposed TFMDL approach in performing better than several benchmark models in terms of estimation accuracy and data efficiency.

关键词:

作者机构:

  • [ 1 ] [Pan, Yuyan Annie]Beijing Univ Technol, Beijing Key Lab Traff Engn, Beijing, Peoples R China
  • [ 2 ] [Chen, Yanyan]Beijing Univ Technol, Beijing Key Lab Traff Engn, Beijing, Peoples R China
  • [ 3 ] [Li, Siyang]Beijing Univ Technol, Beijing Key Lab Traff Engn, Beijing, Peoples R China
  • [ 4 ] [Li, Wenhao]Beijing Univ Technol, Beijing Key Lab Traff Engn, Beijing, Peoples R China
  • [ 5 ] [Guo, Jifu]Beijing Transport Inst, 9 LiuLiQiao South Rd, Beijing, Peoples R China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

JOURNAL OF ADVANCED TRANSPORTATION

ISSN: 0197-6729

年份: 2022

卷: 2022

2 . 3

JCR@2022

2 . 3 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:49

JCR分区:3

中科院分区:4

被引次数:

WoS核心集被引频次: 10

SCOPUS被引频次: 12

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:282/4611371
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司