收录:
摘要:
Images captured in low-light conditions usually suffer from very low contrast and underexpose, which cannot be directly utilized in the subsequent computer vision tasks, such as object recognition, detection, identification and tracking. Existing methods include HE based method, Retinex theory based method and deep learning method which may generate undesirable enhanced results including amplified noise, biased colors and extreme boundary. To address this problem, we utilize prior knowledge of Retinex theory and GAN based on data statistic to propose a progressive GAN-based Transfer network to realize the low-light enhancement. In this paper, the image is decomposed by JieP method based on the Retinex model to obtain the reflection and light components, and learn the relationship between the reflection component of the low-light image and normal light image via a reflection decomposition on network (RefDecN), and then generate the reflection component of the low-light image. Then, another illumination transfering network (IllumTransN) is utilized to transfer the light of normal light image to the reflection component to realize low-light enhancement. Experimental results of low-light image enhancement on RAISE, LOL and MEF datasets demonstrate our ProGAN can outperform state-of-the-art methods in terms of objective and subjective quality.
关键词:
通讯作者信息:
来源 :
MULTIMEDIA MODELING, MMM 2022, PT II
ISSN: 0302-9743
年份: 2022
卷: 13142
页码: 292-304
归属院系: