• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Ping, Xu (Ping, Xu.) | Yao, Baofeng (Yao, Baofeng.) | Niu, Kai (Niu, Kai.) | Yuan, Meng (Yuan, Meng.)

收录:

EI Scopus SCIE

摘要:

The pump provides the necessary pressure and flow for the organic Rankine cycle (ORC) system. The traditional methods have obvious limitations when analyzing the time-varying characteristics of the key operating parameters of the pump. This study first introduces the scatter plot analysis method to analyze and evaluate the time-varying and coupling characteristics of the hydraulic diaphragm metering pump. Then, a machine learning-fitting algorithm hybrid model is constructed to solve and verify the actual matching correlation equation of the key operating parameters. In addition, the complicated non-linear relationship brings great challenges to obtaining the limit value of the pump isentropic efficiency. This study introduces the bilinear interpolation algorithm to systematically analyze the change trend between operating parameters and isentropic efficiency. Based on the wavelet neural network (WNN) with momentum term and particle swarm optimization-adaptive inertia weight adjusting (PSO-AIWA), a machine learning framework with an intelligent algorithm is constructed. Under this framework, the maximum isentropic efficiency of the pump can be stabilized at 70.22-74.67% under all working conditions. Through the theoretical analysis model, the effectiveness of this framework is evaluated. Finally, the optimal cycle parameters are evaluated. This study can provide direct significance for the analysis and optimization of the actual performance of the ORC system.

关键词:

Isentropic efficiency Particle swarm optimization Hydraulic diaphragm metering pump Machine learning Organic Rankine cycle

作者机构:

  • [ 1 ] [Ping, Xu]Beijing Univ Technol, Fac Environm & Life, Beijing Key Lab Heat Transfer & Energy Convers, Key Lab Enhanced Heat Transfer & Energy Conservat, Beijing, Peoples R China
  • [ 2 ] [Yao, Baofeng]Beijing Univ Technol, Fac Environm & Life, Beijing Key Lab Heat Transfer & Energy Convers, Key Lab Enhanced Heat Transfer & Energy Conservat, Beijing, Peoples R China
  • [ 3 ] [Niu, Kai]Beijing Univ Technol, Fac Environm & Life, Beijing Key Lab Heat Transfer & Energy Convers, Key Lab Enhanced Heat Transfer & Energy Conservat, Beijing, Peoples R China
  • [ 4 ] [Yuan, Meng]Beijing Univ Technol, Fac Environm & Life, Beijing Key Lab Heat Transfer & Energy Convers, Key Lab Enhanced Heat Transfer & Energy Conservat, Beijing, Peoples R China

通讯作者信息:

电子邮件地址:

查看成果更多字段

相关关键词:

来源 :

FRONTIERS IN ENERGY RESEARCH

ISSN: 2296-598X

年份: 2022

卷: 10

3 . 4

JCR@2022

3 . 4 0 0

JCR@2022

JCR分区:3

中科院分区:4

被引次数:

WoS核心集被引频次: 11

SCOPUS被引频次:

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:364/4897004
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司