• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Jian, Meng (Jian, Meng.) | Zhang, Chenlin (Zhang, Chenlin.) | Liu, Meishan (Liu, Meishan.) | Fu, Xin (Fu, Xin.) | Li, Siqi (Li, Siqi.) | Shi, Ge (Shi, Ge.) | Wu, Lifang (Wu, Lifang.) (学者:毋立芳)

收录:

EI Scopus SCIE

摘要:

Behaviorally similar neighbors in the interaction graph have been actively explored to facilitate the collaboration between users and items and address the interaction sparsity issue. We investigate homogenous neighbors between users or items to mine collaborative signals for embedding learning. In the case of multiple and complex composition of user interests and item attributes, traditional uniform embedding is insufficient to depict matching between a specific user-item pair. Therefore, we propose a siamese graph-based dynamic matching (SGDM) model for collaborative filtering. A target-aware dual attention module is introduced to update neighbors with their varying contributions to unveil users' interests, which explicitly encodes the clue of the candidate matching target. For a target user-item pair, homogeneous neighbors participate in the interest propagation through graph convolution, which learns user/item embeddings respectively on the sia-mese homogeneous graphs. The dual dynamic aggregation in graph convolution endows a specific user-item pair with dynamic matching, which is expected to meet the needs of fine-grained filtering and promote the performance of collaborative filtering. Extensive experimental results confirm the collaboration between siamese homogeneous graphs of users and items. It further illustrates the effectiveness of the proposed SGDM in mining homogeneous collaborative signals for embedding learning and collaborative filtering.(c) 2022 Elsevier Inc. All rights reserved.

关键词:

Collaborative filtering Homogeneous graph Graph neighbor User interest

作者机构:

  • [ 1 ] [Jian, Meng]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 2 ] [Zhang, Chenlin]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 3 ] [Liu, Meishan]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 4 ] [Li, Siqi]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 5 ] [Shi, Ge]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 6 ] [Wu, Lifang]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
  • [ 7 ] [Fu, Xin]Univ Jinan, Sch Water Conservancy & Environm, Jinan 250022, Peoples R China

通讯作者信息:

查看成果更多字段

相关关键词:

相关文章:

来源 :

INFORMATION SCIENCES

ISSN: 0020-0255

年份: 2022

卷: 611

页码: 185-198

8 . 1

JCR@2022

8 . 1 0 0

JCR@2022

ESI学科: COMPUTER SCIENCE;

ESI高被引阀值:46

JCR分区:1

中科院分区:1

被引次数:

WoS核心集被引频次:

SCOPUS被引频次: 15

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 0

归属院系:

在线人数/总访问数:565/4966882
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司