• 综合
  • 标题
  • 关键词
  • 摘要
  • 学者
  • 期刊-刊名
  • 期刊-ISSN
  • 会议名称
搜索

作者:

Ma, Zhonghai (Ma, Zhonghai.) | Liao, Haitao (Liao, Haitao.) | Gao, Jianhang (Gao, Jianhang.) | Nie, Songlin (Nie, Songlin.) (学者:聂松林) | Geng, Yugang (Geng, Yugang.)

收录:

EI Scopus SCIE

摘要:

Machine learning (ML) methods are becoming popular in prognostics and health management (PHM) of engi-neering systems due to the recent advances of sensor technology and the prevalent use of artificial neural net-works. In practice, mechatronic systems are by nature, prone to degradation/failure due to complex failure mechanisms and other unknown causes. As a result, degradation modeling and prediction of mechatronic sys-tems are quite challenging especially when highly integrative and special operational conditions are considered. To overcome such challenges, artificial neural networks can be employed. This paper proposes the use of a long short-term memory (LSTM)-based multi-input neural network for degradation modeling and prediction of an Electro-Hydrostatic Actuator (EHA) system. The failure mechanisms of the EHA system are explored first, and the obtained physics-of-failure information is utilized in constructing the LSTM neural network to enhance the prediction capability of the model. An actual dataset collected from an EHA test bench is utilized to illustrate the effectiveness of the proposed physics-informed LSTM method for modeling the EHA system's degradation behavior. The result shows that the proposed method provides more accurate life prediction than several benchmark methods for the EHA system.

关键词:

Degradation assessment Feature extraction Long short-term memory Machine learning Electro-hydrostatic actuator

作者机构:

  • [ 1 ] [Ma, Zhonghai]Beijing Univ Technol, Beijing Key Lab Adv Mfg Technol, Beijing, Peoples R China
  • [ 2 ] [Gao, Jianhang]Beijing Univ Technol, Beijing Key Lab Adv Mfg Technol, Beijing, Peoples R China
  • [ 3 ] [Nie, Songlin]Beijing Univ Technol, Beijing Key Lab Adv Mfg Technol, Beijing, Peoples R China
  • [ 4 ] [Geng, Yugang]Beijing Univ Technol, Beijing Key Lab Adv Mfg Technol, Beijing, Peoples R China
  • [ 5 ] [Liao, Haitao]Univ Arkansas, Dept Ind Engn, Fayetteville, AR USA
  • [ 6 ] [Nie, Songlin]Beijing Univ Technol, Beijing Key Lab Adv Mfg Technol, Beijing 100124, Peoples R China

通讯作者信息:

  • [Nie, Songlin]Beijing Univ Technol, Beijing Key Lab Adv Mfg Technol, Beijing 100124, Peoples R China;;

电子邮件地址:

查看成果更多字段

相关关键词:

相关文章:

来源 :

RELIABILITY ENGINEERING & SYSTEM SAFETY

ISSN: 0951-8320

年份: 2023

卷: 229

8 . 1 0 0

JCR@2022

ESI学科: ENGINEERING;

ESI高被引阀值:19

被引次数:

WoS核心集被引频次: 32

SCOPUS被引频次: 37

ESI高被引论文在榜: 0 展开所有

万方被引频次:

中文被引频次:

近30日浏览量: 1

归属院系:

在线人数/总访问数:1267/4275053
地址:北京工业大学图书馆(北京市朝阳区平乐园100号 邮编:100124) 联系我们:010-67392185
版权所有:北京工业大学图书馆 站点建设与维护:北京爱琴海乐之技术有限公司